

APPENDIX 7. INVESTIGATIONS – SOIL SAMPLING

17 June 2019

Mr George Kiritsis Harcourts Williams Luxury 60 Kensington Road Rose Park SA 5067

Dear George

Re: Medindie Soil Sampling

1. Introduction

Environmental Projects (EP) was commissioned by Harcourts Williams Luxury (HWL) to undertake insitu soil sampling at 43 Main North Road, Medindie, South Australia (the site). A site location plan is provided as Figure 1, **Attachment 1**.

EP understood:

- the site has an area of approximately 1500 m² and is occupied by a large shed structure on the Main North Road frontage. Approximately 500 m² at the rear of the site is unsealed
- the site was formerly used for vehicle maintenance and there's a possibility that waste oils and other liquids may have been disposed of on the unsealed portion of the site
- it was unknown if there were any underground storage tanks (USTs) on site
- soil sampling was required as part of initial investigations for offsite waste soil disposal classification and for potential site redevelopment for high density-residential use.

1.1 Objectives

The objective of the soil sampling was to determine the waste disposal classification of in-situ soils.

1.2 Regulatory Guidance

Intrusive assessment of soils at the subject site was completed with reference to the guidance in the following publications:

- Environment Protection Authority SA (2010) Standard for the production and use of Waste Derived Fill, South Australia
- Environment Protection Authority SA (2018) Guidelines for the assessment and remediation of site contamination

Level 3, 117 King William Street, Adelaide 5000 www.environmentalprojects.com.au

- Environment Protection Authority Victoria, 2007. Soils Sampling Guideline (Off-site Management and Acceptance to Landfill). Publication 1178
- National Environmental Protection (Assessment of Site Contamination) Measure (ASC NEPM) 1999 (as amended 2013)
- Standards Australia (AS) 4482.1-2005: Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds
- Standards Australia, AS 4482.2-1999 Guide to the investigation of potentially contaminated soil Part 2: Volatile substances

2. Methodology

The scope of works and the soil sampling methodology completed is outlined in Table 2-1.

Activity	Description
Preparation of Environment, Health and Safety (EHS) Plan	Prior to the commencement of fieldwork, EP prepared and EHS plan to identify known hazards to the health and safety of project personnel and the environment, based on an understanding of the work and EP's experience on similar projects.
Soil sampling	On 28 March 2019, 8 soil bores (SB1-SB8) were drilled using push tube methodology by licensed driller Aussie Probe. Sample locations are provided on Figure 2, Attachment 1 . Soil samples were collected at depths considered appropriate for sampling by EP to ensure all discrete soil layers were sampled. 35 primary samples were collected.
Sample handling	Samples were handled exclusively by EP personnel and were stored in glass jars provided by the primary contract laboratory, Envirolab. Disposable nitrile gloves were worn whilst handling all samples and were replaced prior to the collection of each sample.
Soil gas screening	A calibrated photo-ionisation detector (PID) was used to screen replicate soil samples for the presence of volatile organic compounds (VOCs). Soil samples were placed into zip-lock plastic bags and allowed to equilibrate under ambient temperatures before PID readings were undertaken. PID readings were recorded on the soil logs and are provided in Attachment 2 .
Decontamination of sampling equipment	Core trays and push tubes were decontaminated using a phosphate free Decon 90 solution followed by a potable water rinse.
Quality control blanks and duplicate samples	Eight blind coded duplicates were collected whilst sampling. One duplicate (Dup 7, duplicate of SB7-1) was selected for intra-laboratory testing at Envirolab and one duplicate (Dup 6, duplicate of SB6-2) was selected for inter-laboratory testing at secondary laboratory Australia Laboratory Services (ALS). One equipment rinsate sample (EB) was collected and one trip blank sample (TB) was placed in the sample batch accompanying the soil jars from the field to the laboratory. EP's QA/QC methodology was generally consistent with the recommendations in ASC NEPM.
Soil logging	Soils encountered at each location were logged in general accordance with Standards Australia (1993) Geotechnical Site Investigations AS1726. Soil logs are provided as Attachment 2 .
Sample preservation and transportation	All samples were stored under chilled conditions in a portable cooler immediately after sampling and prior to and during delivery to the laboratory. Sample transport was performed in accordance with EP's COC procedures.
Laboratory analysis	The following laboratory testing was requested:

Table 2-1: Soil sampling methodology

Activity	Description
	Eight primary samples (and one intra-laboratory duplicate and one inter- laboratory duplicate) were selected for:
	 heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc)
	- total recoverable hydrocarbons (TRH)
	- benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN)
	Four primary samples were selected for:
	 polycyclic aromatic hydrocarbon (PAH)
	 volatile organic compounds (VOC)
	One primary sample was selected for a ¹ NEPM HIL Screen.
	Envirolab and ALS were both NATA accredited for the selected testing.
Additional laboratory testing (ASLP and MEP)	On review of the primary laboratory results Toxicity Characteristic Leaching Procedure (TCLP) was completed using Australian Standard Leaching Procedure (ASLP) on metals (arsenic, copper, lead and zinc).
	Multiple Extraction Procedure (MEP) was selected for sample SB8-2 for benzo(a)pyrene.
NEPM HIL screen – metals (arse	benzo(a)pyrene.

¹NEPM HIL screen – metals (arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, selenium, zinc), hexavalent chromium, cyanide, PAHs, phenol, pentachlorophenol, cresols, DDT+DDE+DDD, aldrin+dieldrin, chlordane, endosulfan, endrin, heptachlor, hexachlorobenzene (HCB), methoxychlor, chlorpyrifos, polychlorinated biphenyl (PCB), mirex, toxaphene, atrazine, bifenthrin

3. Screening Criteria

Soil Disposal

Concentrations are assessed against applicable soil disposal criteria to determine waste classification. The criteria used to assess the suitability of soils for re-use and /or for off-site disposal are documented in the following guidelines:

- Environment Protection Authority (2010) Standard for the production and use of Waste Derived Fill, South Australia:
 - Waste Fill Criteria (WF)
 - Intermediate Waste Soil Criteria (IWS)
 - Low Level Contaminated Waste Criteria (LLCW).

Maximum permissible chemical concentrations for these waste classifications are referred to collectively as the soil disposal criteria and are presented in soil chemical summary tables.

In addition to chemical content, consideration was given to the physical requirements of WF as defined in the Environment Protection Regulations 2009. "Waste Fill" is defined as waste containing clay, concrete, rock, sand, soil or other inert mineralogical matter in pieces not exceeding 100 mm in length (but does not include waste consisting of asbestos or bitumen).

The SA EPA accepts use of the 95% Upper Confidence Limit (UCL) about the mean for establishing statistical contaminant concentration average for comparison to disposal criteria. However, for the 95% UCL to apply, the data set must be reviewed for potential hot spots of contamination via the following additional criteria:

- Maximum concentration less than 250% of the chemical criterion; and
- Standard deviation less than 50% of the chemical criterion.

Deviation from these cut off criteria may indicate the presence of anomalous or isolated hot spot concentrations, which may require segregation for appropriate risk management.

4. Results

The following section summarises the field observations and results of laboratory testing.

Detailed descriptions of the in-situ materials encountered, and depth intervals identified are summarised in the soil logs in **Attachment 2**. Tabulated laboratory analytical results are provided in **Attachment 3**.

4.1 Surface and Sub-surface Conditions

Fill material was encountered at all locations to a maximum depth of 0.6 mBGL at SB5 and generally consisted of a mix of fine to coarse grained grey brown gravelly/clayey sand, with low plasticity clay. Foreign inclusions in fill were noted as follows:

- Trace brick at SB3, SB5, SB7 (in two fill layers) and SB8
- Trace ash at SB5, SB7 (in two fill layers) and SB8
- Trace glass at SB7 (in two fill layers) and SB8.

Natural soils were encountered at all locations and generally consisted of low to medium plasticity, brown clay with trace fine to medium grained sand, grading to medium plasticity, brown/pale yellow silty sandy/silty gravelly clay, with fine to coarse grained sand and fine to medium gravel.

The highest PID reading noted was 0.1 ppmv, indicating concentrations of VOC's in soils on site were negligible.

A mechanic's service pit was noted inside the shed and soil bores SB3 and SB4 were drilled immediately adjacent to it.

4.2 Analytical Results

Chemical summary tables are presented in Attachment 3. Where a sample exceeded a relevant criterion, the concentration has been highlighted. Laboratory certificates and chain of custody documentation is provided in **Attachment 4**.

Various exceedances of the disposal criteria were noted across the site and are shown in Table 4-1.

Table 4-1: Samples exceeding soil disposal criteria

Analyte	Sample exceeding WF	Sample exceeding IWS	Sample exceeding LLCW
Benzo(a)pyrene	SB7-2	SB3-1, SB5-3	SB8-2
PAHs (sum of total)	SB3-1, SB5-3, SB7-2	SB8-2	-
TPH +C ₁₀ -C ₃₆ (sum of total)	-	SB7-2	-
TPH C_{10} - C_{40} (sum of total)	-	SB7-2	-
Arsenic	SB2-1, SB5-3, SB7-1, SB7-2	-	-
Copper	SB1-1, SB2-1, SB7-1, SB8-2	-	-

Analyte	Sample exceeding WF	Sample exceeding IWS	Sample exceeding LLCW
Lead	SB1-1, SB3-1, SB7-1, SB7-2, SB8-2	-	-
Zinc	SB1-1, SB3-1, SB7-1, SB7-2, SB8-2	-	-

Concentrations of chlorinated hydrocarbons, halogenated phenols, halogenated benzenes, halogenated hydrocarbons, herbicides, organochlorine pesticides, pesticides, polychlorinated biphenyls, solvents and MAH's were all below laboratory limits of reporting (LOR).

4.3 Leachate Results

ASLP analysis was requested for Sample SB1-1 for copper and zinc and for sample SB7-2 for arsenic and lead. All samples had concentrations above the laboratory LOR but below the maximum leachate concentration.

Sample SB8-2 had benzo(a)pyrene concentrations above Low Level Contaminated Waste criterion. The sample was submitted for MEP analysis and concentrations of benzo(a)pyrene and other PAH compounds in leachate were below the laboratory LOR for each extraction.

The results of the MEP analysis suggested the fill material complied with Low Level Contaminated Waste.

5. Data Validation

An evaluation of QA/QC information is provided in Table 5-1 below. This includes consideration of data quality objectives outlined in the ASC NEPM 1999 (as amended 2013) covering both field methodology and laboratory data integrity. As part of the evaluation, field duplicate sample chemical data were compared by determining the relative percentage difference (RPD) between the results. The RPD was calculated using the formula:

RPD (%) =
$$100(x1 - x2) / X$$

Where x1, x2 are duplicate results and X is the mean of duplicate results

- Based on guidance provided in reference documents:
- Typically, acceptable RPD values for soil are considered to be +/-30%
- A soil RPD within the range of +/- 30% is considered to show acceptable agreement and conversely, data is considered to have poor agreement where an RPD is outside this range.

The acceptance criteria for internal laboratory replicates is set at an RPD of +/- 20%. Laboratory recoveries should be in the range of 70% to 130%. Duplicate RPDs and equipment rinsate and trip blank results are provided in **Attachment 3**. The results of internal laboratory quality control procedures are provided within the laboratory certificates in **Attachment 4**.

Table 5-1: Soil data validation

QA/QC Aspect	Compliant	Comment
COC documentation completed	Yes	All samples were transported under COC procedures.

QA/QC Aspect	Compliant	Comment
Samples delivered to the laboratory within sample holding times and in laboratory-supplied containers with the correct preservative	Mostly	All samples were delivered to the laboratories within the sample holding times and in laboratory-supplied containers, excluding MEP analysis of benzo(a)pyrene (PAHs). MEP analysis of sample SB8-2 for PAHs in soil was requested outside of the laboratory's recommended technical holding times. US EPA document "Sample Holding Time Re-evaluation" (October 2005) concluded that "For the most part, the representative PAHs exhibited stability for a length of time at least double that of the recommended MHT in all 3 soils/sediments and both storage conditions" suggesting that the exceedance of technical holding time in this instance would not affect the results given the samples were within double the recommended MHT.
All analysis NATA accredited	Yes	Chemical analysis was undertaken in accordance with Shedule B(3) of the ASC NEPM. Envirolab and ALS performed all analysis and were NATA accredited for all analyses.
Equipment calibrations	Yes	The PID was calibrated by the rental company prior to the field event. PID calibration certificates are included in Attachment 2 .
Required number of sample duplicates and blanks collected	Yes	Nine primary samples were selected for analysis. One duplicate sample was submitted for intra-laboratory analysis and one duplicate sample for inter-laboratory analysis, meeting recommendations in AS4482.1-2005 and ASC NEPM for nine primary samples. Equipment rinsate blank and trip blank samples were submitted for analysis.
Soil QA/QC samples reported RPDs within limits set by AS4482.1-2005 and ASC NEPM	Mostly	 The majority of duplicate pair RPDs were within +/- 30% except for: Lead (31%) for duplicate pair SB6-2/Dup 6 TRH +C₁₀-C₃₆ (sum of total) (69%) and TRH C₁₀-C₄₀ (sum of total) (62%) for duplicate pair SB7-1/Dup 7. These RPD exceedances were likely due to the heterogeneous distribution of analytes in soil, and overall the analytical results indicated good data correlation between the primary and duplicate results.
Acceptable field blank sample results	Yes	Equipment rinsate blank and trip blank sample concentrations were below laboratory LOR, indicating field decontamination procedures and sample transportation procedures were effective at limiting the risk of cross-contamination between samples.
Acceptable laboratory QC results	Mostly	Envirolab reported duplicate exceedances for nickel and several TRH fractions and PAHs. Reanalysis of all duplicates indicated exceedances were likely due to sample heterogeneity. The remaining method blanks, laboratory control spikes and matrix spikes were within acceptable limits. ALS reported all internal and external laboratory duplicates, method blanks, laboratory control spikes and matrix spikes were within acceptable limits.

EP considered the results of the QA/QC processes and testing data summarised in Table 5-1 provided appropriate confidence that the data couple be relied upon, therefore the data quality was acceptable for the purposes of the assessment.

6. Conclusions

Laboratory MEP analysis for benzo(a)pyrene confirmed leachate concentrations in each extract were below the laboratory LOR and suggested the material complies with Low Level Contaminated Waste.

Laboratory ASLP analysis for metals (arsenic, copper, lead and zinc) confirmed concentrations of these metals in several samples complied with Intermediate Waste soils.

Based on the field observations and laboratory results of selected soil samples the fill material across site was classified as Low Level Contaminated waste and needs to be disposed of to a licensed landfill facility. Soil cartage needs to be completed by an appropriately licensed contractor.

The proposed receiving site should be provided with a copy of this report prior to transportation of soil to the site.

LIMITATIONS

Scope of Services

This environmental site assessment report (the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the client and Environmental Projects ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

Reliance on Data

In preparing the report, Environmental Projects has relied upon data, surveys, analyses, designs and plans as well as any other information provided by the client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, Environmental Projects has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Environmental Projects will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Environmental Projects.

Environmental Conclusions

In accordance with the scope of services, Environmental Projects has relied upon the data and conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling techniques can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentrations of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

Report for Benefit of Client

The report has been prepared for the benefit of the client and no other party. Environmental Projects assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by

any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitations matters arising from any negligent act or omission of Environmental Projects or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters

Other Limitations

Environmental Projects will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Regards,

Brad Fitzgerald Lead Consultant

Attachments

- 1. Figures
- 2. Soil Bore Logs
- 3. Chemical Summary Tables
- 4. Laboratory Certificates of Analysis and Chain of Custody Documentation

ATTACHMENT 1

Level 3, 117 King William Street, Adelaide 5000 www.environmentalprojects.com.au

43 Main North Road, Medindie SA 5081

Job number: 19032.01

Drawn: AN Date: 28/03/2019 Rev: A

Prepared for: Harcourts Williams Luxury

Job name: Medindie Soil Sampling

Figure 1

Level 3, 117 King William Street, Adelaide 5000 www.environmentalprojects.com.au

43 Main North Road, Medindie SA 5081

Job number: 19032.01

Prepared for: Harcourts Williams Luxury

Job name: Medindie Soil Sampling

Ξ

Drawn: AN Date: 28/03/2019 Rev: A

ATTACHMENT 2

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

сомм	COMMENTS								
Depth (m)	Samples	PID	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations		
	SB1-1	4.0			FILL: Gravelly SAND, fine to coarse, grey, fine to medium gravels.	D			
	SB1-2	0.1			FILL: Clayey SAND, fine to medium, grey brown, low plasticity with fine to medium gravels.	D			
- 0.5	SB1-3	0.1	Dup-1		CLAY, low plasticity, brown, trace fine grained sand.	D			
	SB1-4	0			Silty Sandy CLAY, low to medium plasticity, pale yellow, fine to medium grained sand, trace fine gravels.	D			
	SB1-5	0							
1					End of hole at 1.0 mBGL.				

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

COMN	IENTS						
Depth (m)	Samples	PID	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations
-	SB2-1	0			FILL: CLAY, low plasticity, brown, trace fine to medium grained sand.	D	Fine to medium gravels at surface.
	SB2-2	0	Dup-2		Gravelly Silty CLAY, low to medium plasticity, mottled brown pale yellow, fine to medium gravels with fine to medium grained sand.	D	
0.5	SB2-3	0			Silty Sandy CLAY, low to medium plasticity, fine to medium grained sand with fine to medium gravels.	D	
	SB2-4	0					
-1					End of hole at 1.0 mBGL.		

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

Depth (m)	Samples	PID	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations
					CONCRETE	D	
	SB3-1	0.1			FILL: Gravelly SAND, coarse grained, brown, fine to medium gravels, trace brick fragments.	D	
0.5	SB3-2	0.1	Dup-3		CLAY, low to medium plasticity, brown with fine to medium grained sand, trace fine to medium gravels.	D	
0.5	SB3-3	0			Silty Sandy CLAY, low to medium plasticity, pale yellow, fine to medium grained sand with fine to medium gravels.	D	
	SB3-4	0					
4					End of hole at 1.0 mBGL.		

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

COMN	IENTS Inside of s	hed, 0.	4 metres away fro	m pit.			
Depth (m)	Samples	DIA	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations
_					CONCRETE.		
-	SB4-1	0.1			FILL: Gravelly CLAY, low plasticity, brown, fine to medium gravels.	D	
- 0.5	SB4-2	0.1	Dup-4		Gravelly Silty Sandy CLAY, pale yellow, fine to medium grained sand with fine to medium gravels.	D	
-	SB4-3	0			Silty Sandy CLAY, low to medium plasticity, pale yellow, fine to medium grained sand with fine to medium gravels.	D	
	004-4						
1					End of hole at 1.0 mBGL.		

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

сомм	COMMENTS								
Depth (m)	Samples	DIA	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations		
_	SB5-1 SB5-2	0.1			FILL: Gravelly SAND, fine to coarse grained, grey, fine to medium gravels, trace brick fragments and ash.	D			
- 0.5	SB5-3	0	Dup-5		FILL: CLAY, low to medium plasticity, brown, trace fine to medium grained sand.	D	Trace roots and ash to 0.4 mBGL.		
-	SB5-4 SB5-5	0			Gravelly Silty Sandy CLAY, low to medium plasticity, pale yellow, fine grained sand with fine to medium gravels.	D			
1					End of hole at 1.0 mBGL.				

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

COMMENTS								
Depth (m)	Samples	DIA	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations	
	SB6-1	0.1			FILL: Gravelly SAND, fine to coarse grained, grey, fine to medium gavels, brick fragments.	D		
0.5	SB6-2	0	Dup-6		CLAY, low to medium plasticity, brown, trace fine grained sand.	D		
1	SB6-3 SB6-4	0			Silty Sandy CLAY, low to medium plasticity, pale yellow, fine to medium grained sand with fine gravels.	D	Gravel decreases with depth from 0.55 mBGL.	
1				<u> </u>	End of hole at 1.0 mBGL			

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

сомм	IENTS						
Depth (m)	Samples	DIA	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations
_	SB7-1	0.1	Dup-7		FILL: Gravelly SAND, fine to medium grained, grey, fine to medium gravels with brick fragments and glass.	D	
-	SB7-2	0.1			FILL: Clayey GRAVEL, fine to medium grained, grey, low plasticity with fine to coarse grained sand, trace ash, brick and glass fragments.	D	
- 0.5	SB7-3	0			CLAY, low to medium plasticity, brown, trace roots.	D	Trace roots from 0.4 to 0.5 mBGL
_	SB7-4	0			Silty Sandy CLAY, medium plasticity, pale yellow, fine to coarse grained sand, trace fine to medium gravels.	D	
				<i></i>	End of hole at 1.0 mBGL.		

DATE 28/03/2019 DRILLING COMPANY Aussie Probe DRILLER Chris Olsen DRILLING METHOD Push tube TOTAL DEPTH 1.0 mBGL

LOGGED BY J.Bermingham

MENTS						
Samples	PID	Duplicate	Graphic Log	Material Description	Moisture	Additional Observations
SB8-1	0.1			FILL: Gravelly SAND, fine to coarse grained, grey, fine to medium gravels with ash, brick and glass fragments.	D	
SB8-2	0.1					
SB8-3	0	Dup-8		CLAY, low to medium plasticity, brown, trace fine to medium grained sand, trace roots.	D	
SB8-4 SB8-5	0			Silty Gravelly CLAY, medium plasticity, brown, fine to medium gravels with fine to coarse grained sand, trace roots.	D	
				End of hole at 1.0 mBGL.		
	SB8-1 SB8-2 SB8-3 SB8-4	80 82 SB8-1 0.1 SB8-2 0.1 SB8-3 0 SB8-3 0 SB8-4 0	sea a sea SB8-1 0.1	seduenSB8-10.1SB8-20.1SB8-30Dup-8SB8-40	and BB-1 0.1 Base of the second seco	sea or or or Material Description or or </td

ATTACHMENT 3

	6		
1		V	
N	T		

	1	1	1				u .	a	
SB3-1	SB2-1	SB1-1	Field ID	SA EPA- Low-level Contaminated Waste	SA EPA- Intermediate Waste	SA EPA- Waste Fill	EQL		
FILL Gravely SAND	FILL, CLAY	FILL, Gravelly SAND	Matrix Description	aminated Waste	faste				
28/03/2019	28/03/2019	28/03/2019	Date						
01-02	0 - 0.1	0 - 0.1	Depth						
<0.1		<0.1					0.1	mg/kg	Acenaphthene
90		0.1					0.1	mg/kg	Acenaphthylene
90		<0.1					0.1	mg/kg	Anthracene
8 6		0.4					0.1	mg/kg	Benz(a)anthracene
8 5		0.57		ъ	2	1	0.05	mg/kg	Benzo(a) pyrene
61		1.0					0.2	mg/kg	Benzo(b+k)fluoranthene
6 8		0.6					0.1	mg/kg	Benzo(g,h,i)perylene
90		0.4					0.1	mg/kg	Chrysene
9.0		0.1					0.1	mg/kg	Dibenz(a,h)anthracene
41		0.4					0.1	mg/kg	Fluoranthene
6 U		<0.1					0.1	mg/kg	Fluorene
24		0.4					0.1	mg/kg	Indeno(1,2,3-c,d)pyrene
0 1	<	<0.1					0.1	mg/kg	Naphthalene
40		0.6					0.1	mg/kg	Pyrene
24		<0.1					0.1	mg/kg	Phenanthrene
34		4.6		200	40	5	0.05	mg/kg	PAHs (Sum of total)
2.2		0.9					0.5	mg/kg	Benzo(a)pyrene TEQ
2.2		0.9					0.5	mg/kg	Benzo(a)pyrene TEQ calc (Half)
2.2		0.9					0.5	mg/kg	Benzo(a)pyrene TEQ (LOR)
			1						•

PAH

	70	5.0	11	<1	4.4	<	11	~	5.9	5.6	12	6.9	5.7	1.6	1.2	<1	0.2 - 0.3	28/03/2019	FILL, Gravelly SAND	SB8-2
	25	3.6	4.2	<0.1	-	0.2	4.4	0.2	2.0	1.3	3.0	1.9	1.9	0.6	0.6	<0.1	0.15 - 0.25	28/03/2019	FILL, Clayey GRAVEL	SB7-2
1				<1													0 - 0.1	28/03/2019	FILL, Gravelly SAND	SB7-1
L				<1													0.15 - 0.25	28/03/2019	CLAY	SB6-2
3.5	20	0.7	2.8	<0.1	1.5	<0.1	2.9	0.4	1.7	1.8	3.9	2.4	1.8	0.2	<0.1 0.3	<0.1	0.2 - 0.3	28/03/2019	FILL, CLAY	SB5-3
				<								ļ	-	-			0.3 - 0.35	28/03/2019	FILL, Gravelly CLAY	SB4-1
5.5	34	2.4	4.0	0.1	2.4	0.2	4.1	0.6	2.6	3.2	6.1	3.8	2.8	0.6	<0.1 0.6	<0.1	0.1 - 0.2	28/03/2019	FILL, Gravelly SAND	SB3-1

Statistics									
Mean						 			
Maximum									
Standard Deviation									
95% UCL									

17/06
6/2019

750	200	20	4	mg/kg	Arsenic	
150	40	20	1	mg/kg	Beryllium	
			3	mg/kg	Boron	
60	30	з	0.4	mg/kg	Cadmium	
750	200	1	1	mg/kg	Chromium (hexavalent)	
			1	mg/kg	Chromium (III+VI)	
1,000	170	170	1	mg/kg	Cobalt	Metals
7,500	2,000	60	1	mg/kg	Copper	als
5,000	1,200	300	1	mg/kg	Lead	
10,000	6,000	500	1	mg/kg	Manganese	
110	30	1	0.1	mg/kg	Mercury	
3,000	600	60	1	mg/kg	Nickel	
			2	mg/kg	Selenium	
50,000	14,000	200	1	mg/kg	Zinc	

SA EPA- Waste Fill SA EPA- Intermediate Waste SA EPA- Low-level Contaminated Waste

P

SB8-2	SB7-2	SB7-1	SB6-2	SB5-3	SB4-1	SB3-1	SB2-1	SB1-1	Field ID
-									0
FILL, Gravelly SAND	FILL, Clayey GRAVEL	FILL, Gravelly SAND	CLAY	FILL, CLAY	FILL, Gravelly CLAY	FILL, Gravelly SAND	FILL, CLAY	FILL, Gravelly SAND	Matrix Description
28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	Date
0.2 - 0.3	0.15 - 0.25	0 - 0.1	0.15 - 0.25	0.2 - 0.3	0.3 - 0.35	0.1 - 0.2	0 - 0.1	0 - 0.1	Depth
17	46	45	9	33	<4	8	29	18	
<1									
10									
0.9	-	ω	<0.4	<0.4	<0.4	0.9	0.8	2	
<1									
13	32	24	22	18	12	8	14	21	
4									
67	58	220	13	21	10	29	130	390	
480	1,000	480	41	170	8	360	230	440	
200									
0.4	0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	
7	10	13	12	10	10	9	8	10	
<2									
390	350	470	29	78	8	230	190	410	

Statistics				
Mean	25.63			 239.4
Maximum	46			470
Standard Deviation	15			174.5
95% UCL	33.08			347.6

17/06/2019

SA EPA- Low-level Contaminated Waste	SA EPA- Intermediate Waste	SA EPA- Waste Fill	EQL			
15	5	1	0.2	mg/kg	Benzene	
500	50	1.4	0.5	g mg/kg	Toluene	
1,000	100	3.1	0.5	mg/kg	Ethylbenzene	в
			1	mg/kg	Xylene (m & p)	BTEX
			0.5	mg/kg	Xylene (o)	
1,800	180	14	1	mg/kg	Xylene Total	
			25	mg/kg	C6-C10	
			25	mg/kg	C6-C10 less BTEX (F1)	
			50	mg/kg	C10-C16	
			50	mg/kg	F2-NAPHTHALENE	
			100	mg/kg	C16-C34	
			100	mg/kg	C34-C40	TPH
1,000	100	65	25	mg/kg	C6 - C9	Т
			50	mg/kg	C10 - C14	
			100	mg/kg	C15 - C28	
			100	mg/kg	C29-C36	
10,000	1,000	1,000	50	mg/kg	+C10 - C36 (Sum of total)	
10,000	1,000	1,000	50	mg/kg	C10 - C40 (Sum of total)	

0B1-1	FILL, GRAVEILY SAIND	20/03/2019	0 - 0.1	<0.2	C.U>	C.U>	^	C.D	^	C7>	C7>	00>	00	~ 100	~100	C7>	200	< 100	<100	
SB2-1	FILL, CLAY	28/03/2019	0 - 0.1	<0.2	<0.5	< \	<2	<	<	<25	<25	<50	<50	<100	<100	<25	<50	<100	<100	. 1
SB3-1	FILL, Gravelly SAND	28/03/2019	0.1 - 0.2	<0.2	<0.5	< 0.5	<	<0.5	<	<25	<25	<50	<50	150	<100	<25	<50	<100	<100	1
SB4-1	FILL, Gravelly CLAY	28/03/2019	0.3 - 0.35	<0.2	<0.5	< 0.5	<	<0.5	<1	<25	<25	<50	<50	<100	<100	<25	<50	<100	<100	1
SB5-3	FILL, CLAY	28/03/2019	0.2 - 0.3	<0.2	<0.5	<	<2	<	<	<25	<25	<50	<50	<100	<100	<25	<50	<100	<100	
SB6-2	CLAY	28/03/2019	0.15 - 0.25	<0.2	<0.5	<1	<2	\leq	<1	<25	<25	<50	<50	<100	<100	<25	<50	<100	<100	
SB7-1	FILL, Gravelly SAND	28/03/2019	0 - 0.1	<0.2	<0.5	< 0.5	^	<0.5	<1	<25	<25	<50	<50	270	120	<25	<50	120	230	350
SB7-2	FILL, Clayey GRAVEL	28/03/2019	0.15 - 0.25	<0.2	<0.5	^	<2	\leq	<1	<25	<25	<50	<50	1,100	510	<25	<50	430	930	1,400
SB8-2	FILL, Gravelly SAND	28/03/2019	0.2 - 0.3	<0.2	<0.5	^	^2	$\overline{\nabla}$	$\overline{\nabla}$	<25	<25	<50	<50	410	290	<25	<50	190	330	520

			Statistics
Standard Deviation	Maximum	Mean	

95% UCL

SA E	SA E	SA E	EQL		
SA EPA- Low-level Contaminated Waste	SA EPA- Intermediate Waste	SA EPA- Waste Fill			
evel Conta	nediate W.	e Fill			
aminated	aste				
Waste					
			0.2	⊒ 2,4-dimethylphenol	
				ю́ г	_
-	-		2	2,4-dinitrophenol	_
			0.5	mg/kg	
			0.2	2-methylphenol	
			0.2	⊐ 9 2-nitrophenol	
			2	4-chloro-3-methylphenol	Phenols
			0.4	ang g g g g g g g g g g g g g g g g g g	nols
			4	≝ 904-nitrophenol	
			0.5	mg/kg Picloram	
			0.2	Tresol Total	
			0.2	ng Phenol	
50,000	17,000	0.5	0.2	Phenolics Total	

Date Depth 28/03/2019 0 - 0.1	
0-0.1 0.2 0.1-0.2	

	1
	ťa
	list
	ŝ

ouro							
Mean			 	 			
Maximum	э						
Standard Deviation	viation						
95% UCL	5L						

17/06/2019

4

Ē		Ę	FILL, V	FILL, (Ē	FILL, (Matrix	taminated Waste	Vaste		
FILL, Gravelly SAND	CLAY	FILL, CLAY	FILL, Gravelly CLAY	FILL, Gravelly SAND	FILL, CLAY	FILL, Gravelly SAND	Matrix Description	Vaste			
28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	Date				
0 - 0.1	0.15 - 0.25	0.2 - 0.3	0.3 - 0.35	0.1 - 0.2	0 - 0.1	0 - 0.1	Depth				
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
< 0.5			< 0.5	< 0.5		< 0.5				0.5	mg/kg mg/kg
<0.5			<0.5	<0.5		<0.5 <0.5				0.5	mg/kg
<0.5			<0.5	<0.5		< 0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
<0.5			< 0.5	< 0.5		< 0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg mg/kg mg/kg mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
< 0.5			< 0.5	< 0.5		< 0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
< 0.5			<0.5	<0.5		< 0.5				0.5	mg/kg
<0.5			<0.5	<0.5		<0.5				0.5	mg/kg
<0.5			<0.5	<0.5		< 0.5				0.5	mg/kg

SA EPA- Low-level Contaminated Waste SA EPA- Intermediate Waste SA EPA- Waste Fill

1,1,1,2-tetrachloroethane

,1,1-trichloroethane

,1,2-trichloroethane

1,1-dichloroethane

1,1-dichloroethene

1,1-dichloropropene

1,2,3-trichloropropane

1,2-dibromo-3-chloropropane

1,2-dichloroethane

1,2-dichloropropane

,3-dichloropropane

2,2-dichloropropane

Bromochloromethane

omodichloromethane

romoform

Chlorinated Hydrocarbons

,1,2,2-tetrachloroethane

Field ID SB1-1

SB2-1

SB7-1 SB6-2 SB3-1 SB4-1 SB5-3

		Statistics	SB8-2	SB7-2
Maximum	Mean		FILL, Gravelly SAND	FILL, Clayey GRAVEL
mim	an		28/03/2019	28/03/2019
			0.2 - 0.3	0.15 - 0.25

				Statistics
95% UCL	Standard Deviation	Maximum	Mean	stics

17/06/2019

	0.5	mg/kg	Carbon tetrachloride	
	0.5	mg/kg	Chlorodibromomethane	
	1	mg/kg	Chloroethane	
	0.5	mg/kg	Chloroform	
	-	mg/kg	Chloromethane	
	0.5	mg/kg	cis-1,2-dichloroethene	ç
	0.5	mg/kg	cis-1,3-dichloropropene	Iorinated H
	0.5	mg/kg	Dibromomethane	Chlorinated Hydrocarbons
	0.5	mg/kg	Hexachlorobutadiene	ons
	0.5	mg/kg	Trichloroethene	
14	0.5	mg/kg	Tetrachloroethene	
	0.5	mg/kg	trans-1,2-dichloroethene	
	0.5	mg/kg	trans-1,3-dichloropropene	
	1	mg/kg	Vinyl chloride	
		0.5 1 0.5 1 0.5 </td <td>1 mg/kg mg/kg</td> <td>Image: Image: Image:</td>	1 mg/kg mg/kg	Image:

SB8-2	SB7-2	SB7-1	SB6-2	SB5-3	SB4-1	SB3-1	SB2-1	SB1-1
FILL, Gravelly SAND	FILL, Clayey GRAVEL	FILL, Gravelly SAND	CLAY	FILL, CLAY	FILL, Gravelly CLAY	FILL, Gravelly SAND	FILL, CLAY	FILL, Gravelly SAND
28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
0.2 - 0.3	0.15 - 0.25	0 - 0.1	0.15 - 0.25	0.2 - 0.3	0.3 - 0.35	0.1 - 0.2	0 - 0.1	0 - 0.1
		< 0.5			< 0.5	< 0.5		< 0.5
		<0.5			<0.5	<0.5		< 0.5
		\leq			<	\leq		\leq
		<0.5			<0.5	<0.5		<0.5
		^			<	<		^_
		<0.5			<0.5	<0.5		<0.5
		<0.5			<0.5	<0.5		<0.5
		<0.5			<0.5	<0.5		<0.5
		< 0.5			< 0.5	< 0.5		< 0.5
		<0.5			<0.5	<0.5		< 0.5
		<0.5			<0.5	<0.5		< 0.5
		<0.5			<0.5	<0.5		<0.5
-		< 0.5			< 0.5	< 0.5		< 0.5
		$\overline{}$						$ \leq $

SA EPA- Waste Fill SA EPA- Intermediate Waste SA EPA- Low-level Contaminated Waste

P

Statistics							
Mean							
Maximum		 					
Standard Deviation		 					
100 %56							

ი

17/06/2019

		0.2	mg/kg	2,3,4,6-tetrachlorophenol	
		0.2	mg/kg	2,4,5-trichlorophenol	
		0.2	mg/kg	2,4,6-trichlorophenol	Halog
		0.2	mg/kg	2,4-dichlorophenol	Halogenated Phenols
		0.2	mg/kg	2,6-dichlorophenol	ienols
		0.2	mg/kg	2-chlorophenol	
		1	mg/kg	Pentachlorophenol	
		0.5	mg/kg	1,2,3-trichlorobenzene	
		0.5	mg/kg	1,2,4-trichlorobenzene	
		0.5	mg/kg	1,2-dichlorobenzene	
		0.5	mg/kg	1,3-dichlorobenzene	Ŧ
		0.5	mg/kg	1,4-dichlorobenzene	lalogenated Be
		0.5	mg/kg	2-chlorotoluene	d Benzenes
		0.5	mg/kg	4-chlorotoluene	ŭ
		0.5	mg/kg	Bromobenzene	
		0.5	mg/kg	Chlorobenzene	
		0.1	mg/kg	Hexachlorobenzene	

SA EPA- Intermediate Waste SA EPA- Low-level Contaminated Waste

SA EPA- Waste Fill

EQL

001 1	EIII Crownly CAND	28/03/2010	0 0 1								\ Ол	\ О Л	л Л	\ О Л	л Л	\ О Л	л Л	\ О Л	\ Ол
																			-
SB2-1	FILL, CLAY	28/03/2019	0 - 0.1																
SB3-1	FILL, Gravelly SAND	28/03/2019	0.1 - 0.2								<0.5	<0.5	< 0.5	<0.5	5.0>	<0.5	< 0.5	<0.5	<0.5
SB4-1	FILL, Gravelly CLAY	28/03/2019	0.3 - 0.35								<0.5	< 0.5	< 0.5	<0.5	5.0>	<0.5	< 0.5	<0.5	< 0.5
SB5-3	FILL, CLAY	28/03/2019	0.2 - 0.3																
SB6-2	CLAY	28/03/2019	0.15 - 0.25																
SB7-1	FILL, Gravelly SAND	28/03/2019	0 - 0.1								<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
SB7-2	FILL, Clayey GRAVEL	28/03/2019	0.15 - 0.25																
SB8-2	FILL, Gravelly SAND	28/03/2019	0.2 - 0.3	<2	<2	<2	<2	<2	<2	<10									

Statistics		
Mean		
Maximum		
Standard Deviation		
95% UCL		

J

Field ID Matrix Description Date Depth
SB1-1 FILL, Gravelly SAND 28/03/2019 0-0.1
SB2-1 FILL, CLAY 28/03/2019 0-0.1
SB3-1 FILL, Gravelly SAND 28/03/2019 0.1 - 0.2
SB4-1 FILL, Gravelly CLAY 28/03/2019 0.3 - 0.35
SB5-3 FILL, CLAY 28/03/2019 0.2 - 0.3
SB6-2 CLAY 28/03/2019 0.15 - 0.25 Image: Clay Image:
SB7-1 FILL, Gravelly SAND 28/03/2019 0-0.1
SB7-2 FILL, Clayey GRAVEL 28/03/2019 0.15 - 0.25
SB8-2 FILL, Gravely SAND 28/03/2019 0.2-0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

SA EPA- Intermediate Waste

SA EPA- Waste Fill

EQ

S 2,4,5-Trichlorophenoxy

2.4-Bendichlorophenoxybutanoic acid

2.4,6-Trichlorophenoxyacetic acid 0.0 5 7 7 8 2-Chlorophenoxyacetic acid

금 4-Chlorophenoxy acetic

Herbicides

0.5

≥ Ng/kg

05 g/kg Atrazine

0.5 Bromoxynil

0.5 Clopyralid

0.5 mg/kg

______ ∭2/kg Dinoseb

mg/kg

0.5 Triclopyr

0.5

0.5 2-Methyl-4-

ු වූ 2-Methyl-4-Chlorophenoxy Butanoic Acid

0.5 mg/kg 2,4,5-TP (Silvex)

0.5 Mg/kg

Standard Deviation	Maximum	Mean	Statistics

95% UCL

17/06	
7/06/2019	

	0.5	1,2-dibromoethane	Hal
	1	Bromomethane	ogenated I
	1	Dichlorodifluoromethan	talogenated Hydrocarbons
	1	Trichlorofluoromethane	suc
	0.5	Cyanide (Free)	Cyanides
	0.5	1,2,4-trimethylbenzene	
	0.5	크 1,3,5-trimethylbenzene	
	0.5	Isopropylbenzene	
	0.5	n-butylbenzene	
	0.5	n-propylbenzene	МАН
	0.5	⊐ p-isopropyltoluene	
	0.5	sec-butylbenzene	
	0.5	Styrene	
	0.5	tert-butylbenzene	
		1 1 1 0.5 <td>Image: Image: Image:</td>	Image:

SA EPA- Waste Fill SA EPA- Intermediate Waste SA EPA- Low-level Contaminated Waste

EQL

SB8-2	SB7-2	SB7-1	SB6-2	SB5-3	SB4-1	SB3-1	SB2-1	SB1-1	Field ID
FILL, Gravelly SAND	FILL, Clayey GRAVEL	FILL, Gravelly SAND	CLAY	FILL, CLAY	FILL, Gravelly CLAY	FILL, Gravelly SAND	FILL, CLAY	FILL, Gravelly SAND	Matrix Description
28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	Date
0.2 - 0.3	0.15 - 0.25	0 - 0.1	0.15 - 0.25	0.2 - 0.3	0.3 - 0.35	0.1 - 0.2	0 - 0.1	0 - 0.1	Depth
		< 0.5			< 0.5	< 0.5		< 0.5	
		<			<	<		<	
		<			<]	<]		<]	
		~			<	<		<	
<0.5									
		<0.5			<0.5	<0.5		<0.5	
		< 0.5			< 0.5	< 0.5		< 0.5	
		< 0.5			< 0.5	< 0.5		< 0.5	
		<0.5			<0.5	<0.5		<0.5	
		<0.5			<0.5	<0.5		<0.5	
		<0.5			< 0.5	< 0.5		< 0.5	
		< 0.5			< 0.5	< 0.5		< 0.5	
		<0.5			<0.5	<0.5		<0.5	
		<0.5			<0.5	<0.5		<0.5	

Statistics							
Mean	 			 	 		
Maximum							
Standard Deviation							
95% UCI							

9

17/06/2019

			St	1]
			Statistics	SB8-2	SB7-2	SB7-1	SB6-2	SB5-3	SB4-1	SB3-1	SB2-1	SB1-1	Field ID
Standard Deviation	Maximum	Mean		FILL, Gravelly SAND	FILL, Clayey GRAVEL	FILL, Gravelly SAND	CLAY	FILL, CLAY	FILL, Gravelly CLAY	FILL, Gravelly SAND	FILL, CLAY	FILL, Gravelly SAND	Matrix Description
eviation	num	in		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	Date
				0.2 - 0.3	0.15 - 0.25	0 - 0.1	0.15 - 0.25	0.2 - 0.3	0.3 - 0.35	0.1 - 0.2	0 - 0.1	0 - 0.1	Depth
				<1									
				<1									
				<1									
				<0.1 <0.1									
				1 <1									
				<1									
				<1									
				^									
				<									
				<									
				<0.1									
				1 <1									
				<1									
				<									
				<									
				$ \leq $									
				$ \leq $									
				<									

		-	-	-			_	_		Organoc	Organochlorine Pesticides	esticides									1
									d-BHC	DDD	DDT	₅ DDT+DDE+DDD	Endosulfan I	_⊾ Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	₅ g-BHC (Lindane)		- Heptachlor epoxide	Methoxychlor
	ŝ	â	ĝ	ĝ	â	â	ģ	ŝ	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ģ	mg/kg	mg/kg
EQL		0.1 0	0.1 0	0.1 0	0.1 (0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
SA EPA- Waste Fill					2						2								2		
SA EPA- Intermediate Waste					2						2								2		
SA EPA- Low-level Contaminated Waste				(5	50						50								50		

95% UCL

17/06/2019

1			6										1
			Statistics	SB8-2	SB7-2	SB7-1	SB6-2	SB5-3	SB4-1	SB3-1	SB2-1	SB1-1	Field ID
Standard Deviation	Maximum	Mean		FILL, Gravelly SAND	FILL, Clayey GRAVEL	FILL, Gravelly SAND	CLAY	FILL, CLAY	FILL, Gravelly CLAY	FILL, Gravelly SAND	FILL, CLAY	FILL, Gravelly SAND	Matrix Description
eviation	um	n		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019	Date
				0.2 - 0.3	0.15 - 0.25	0 - 0.1	0.15 - 0.25	0.2 - 0.3	0.3 - 0.35	0.1 - 0.2	0 - 0.1	0 - 0.1	Depth
				<1									
				< 0.5									
				<1									
				<5									
				<5									
				<1									
				<1									
				<1									
				<1									
				<1									
				<1									
				<1									
				<1		^			^	^		^	
				7.	6.7	<1 4.6	14	12	<1 17	<1 8.2	7.3	<1 4.1	
				.4 <0.	7	6	4	2	7	2	ω	1	
				5]

95% UCL

Image: Characterization of the sector of	SA EPA- Low-level Contaminated Waste	SA EPA- Intermediate Waste	SA EPA- Waste Fill	EQL			
Image: New Year of the product of t				0.1	mg/kg	Chlorpyrifos	OPP
Image: Section of the section of th				0.5	mg/kg	3,5-Dichlorobenzoic acid	Oth
O O O Mirex Oig 0 0.5 mg/kg Mirex Oig Oig Polychlorinated Biphenyls 0 0.1 0.1 0.1 Narochlor 1016 Polychlorinated Biphenyls Polychlorinated Biphenyls 0 0.1 0.1 0.1 Narochlor 1232 Polychlorinated Biphenyls 0 0.1 0.1 mg/kg Mrochlor 1242 Polychlorinated Biphenyls 0 0.1 0.1 mg/kg Mrochlor 1248 Polychlorinated Biphenyls 0 0.1 0.1 mg/kg Mrochlor 1248 Polychlorinated Biphenyls 0 0.1 0.1 mg/kg Polychlor 1254 Polychlorinated Biphenyls 0 0.1 mg/kg PCBs (Sum of total) PCBs (Sum of total) Polychlorinated Biphenyls 1 1 mg/kg PCBs (Sum of total) Polychlorinated Biphenyls Polychlorinated Biphenyls				1	mg/kg	Actril (loxynil)	er
5 Rg MinuteX 0 1 Rg Arochlor 1016 0 0.1 Mg Arochlor 1221 0 0.1 Mg Arochlor 1232 0 0.1 Mg Arochlor 1232 0 0.1 Mg Arochlor 1242 0 0.1 Mg Arochlor 1248 0 0.1 Mg Arochlor 1254 0 0.1 Mg Arochlor 1254 0 0.1 Mg Arochlor 1260 2 2 0.1 Mg PCBs (Sum of total) 50 2 2 0.1 Mg Vyclohexane 0.1 0.1 1 1 1 1				0.5	mg/kg	Bifenthrin	Pesti
1 1 0 mm Arochlor 1221 1 0 1 mm Arochlor 1232 1 0 1 mm Arochlor 1232 1 0 1 mm Arochlor 1242 1 0 1 mm Arochlor 1248 1 0 1 mm Arochlor 1254 1 0 1 mm Arochlor 1254 1 0 1 mm Arochlor 1260 2 2 0 1 mm Arochlor 1260 20 2 2 0 1 mm Arochlor 1260 20 2 2 1 mm Arochlor 1260 Olegan Olegan 30 2 2 1 mm Arochlor 1260 Olegan Olegan Olegan 30 2 2 1 Mo Cyclohexane Olegan Olegan 30 3 3 4 0 3 Moisture Torogan Torogan				0.5	mg/kg	Mirex	cides
0 0 1 mm Arochlor 1232 Polychlorinated Biphenyls 0 0 1 mg/kg Arochlor 1242 0 0 1 mg/kg Arochlor 1248 0 0 1 mg/kg Arochlor 1254 0 0 1 mg/kg Arochlor 1254 0 0 1 mg/kg Arochlor 1260 50 2 2 0 1 mg/kg 1 1 mg/kg PCBs (Sum of total) Solvents 50 2 2 0 1 Noisture				0.1	mg/kg	Arochlor 1016	
0 0.1 1 Arochlor 1242 0.1 0.1 mg/kg Arochlor 1248 0.1 0.1 mg/kg Arochlor 1254 0.1 0.1 mg/kg Arochlor 1254 0.2 0.1 mg/kg PCBs (Sum of total) 1 1 mg/kg PCBs (Sum of total) 1 1 1 Moisture				0.1	mg/kg	Arochlor 1221	
0.1 0.1 <th></th> <th></th> <th></th> <th>0.1</th> <th>mg/kg</th> <th>Arochlor 1232</th> <th>Po</th>				0.1	mg/kg	Arochlor 1232	Po
0.1 0.1 <th></th> <th></th> <th></th> <th>0.1</th> <th>mg/kg</th> <th>Arochlor 1242</th> <th>lychlorinat</th>				0.1	mg/kg	Arochlor 1242	lychlorinat
0.1 0.1 <th></th> <th></th> <th></th> <th>0.1</th> <th>mg/kg</th> <th>Arochlor 1248</th> <th>∍d Bipheny</th>				0.1	mg/kg	Arochlor 1248	∍d Bipheny
50 2 2 0 1 PCBs (Sum of total) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1				0.1	mg/kg	Arochlor 1254	'İs
Image: Cyclohexane Solven at the second se				0.1	mg/kg	Arochlor 1260	
	50	2	2	0.1	mg/kg	PCBs (Sum of total)	
				1	mg/kg	Cyclohexane	Solvents
				0.1	%	Moisture	Inorganics
C: CPA (Chlorthal) Diacid ₹				0.5	mg/kg	DCPA (Chlorthal) Diacid	

90	17,	
21	/06/	
/2019	Ĕ	

1	mg/kg	Naphthalene	PAH/Phenols
10	mg/kg	C6-C10	0,
10	mg/kg	C6-C10 less BTEX (F1)	
50	mg/kg	C10-C16	
50	mg/kg	F2-NAPHTHALENE	
100	mg/kg	C16-C34	
100	mg/kg	C34-C40	TRH
10	mg/kg	C6 - C9	н
50	mg/kg	C10 - C14	
100	mg/kg	C15 - C28	
100	mg/kg	C29-C36	
50	mg/kg	+C10 - C36 (Sum of total)	
50	mg/kg	C10 - C40 (Sum of total)	
0.2	mg/kg	Benzene	
0.5	mg/kg	Toluene	
0.5	mg/kg	Ethylbenzene	
0.5	mg/kg	Xylene (m & p)	BTEX
0.5	mg/kg	Xylene (o)	
0.2	mg/kg	Total BTEX	
0.5	mg/kg	Xylene Total	

RPD	Dup-7 28/03/2019 Intralab Duplicate	SB7-1 28/03/2019 Primary	RPD	Dup-6 28/03/2019 Interlab Duplicate	SB6-2 28/03/2019 Primary	
	vlicate			licate		
0	\leq	\leq	0	\leq	<1	
0	<25	<25	0	<10	<25	
0	<25	<25	0	<10	<25 <25 <50	
0	<50	<50	0	<50	<50	
0	<50	<50	0	<50	<50	
25	210	270	0	<100	<100	
18	<100	120	0	<100	<100	
0	<25	<25	0	<10	<25	
0	<50	<50	0	<50	<50	
18	<100	120	0	<100	<100	
30	170	230	0	<100	<100	
69	170	350	0	<50	<50	
62	210	400	0	<50	<50	
0	<0.2	<0.2	0	<0.2	<0.2	
0	<0.5	<0.5	0	<0.5	<0.5	
0	^	< 0.5	0	< 0.5	<1	
0	<2	\leq	0	<0.5	<2	
0	\leq	<0.5	0	<0.5	<1	
				< 0.2		
0	^	^	0	< 0.5	<	

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

EQL

Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) *Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

4	mg/kg	Arsenic
0.4	mg/kg	Cadmium
1	mg/kg	Chromium (III+VI)
1	mg/kg	Copper
1	mg/kg	Lead
0.1	mg/kg	Mercury
1	mg/kg	Nickel
1	mg/kg	Zinc
1	%	Moisture Content
0.1	%	Moisture

Metals

Inorganics

EQL

Field ID	Date	Sample Type										
SB6-2	28/03/2019	Primary	6	<0.4	22	13	41	<0.1	12	29		14
Dup-6	28/03/2019	Interlab Duplicate	10	<1	26	13	30	<0.1	14	30	14.4	
RPD			11	0	17	0	31	0	15	з		
SB7-1	28/03/2019	Primary	45	3	24	220	480	0.3	13	470		4.6
Dup-7	28/03/2019	Intralab Duplicate	43	4	24	250	540	0.4	14	520		4.9
RPD			5	29	0	13	12	29	7	10		6

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) *Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Chemical Table - ASLP Leachate

		Metals	als	
	Arsenic	Copper	Lead	Zinc
	mg/L	mg/L	mg/L	mg/L
EQL	0.05	0.01	0.03	0.02
SA EPA- Waste Fill				
SA EPA- Intermediate Waste	ъ	10	ъ	250
SA EPA- Low-level Contaminated Waste				

SB1-1 28/03/2019 0.2 0.5 SB7-2 28/03/2019 0.2 0.5	Field ID	Date				
28/03/2019 0.2 0.	\rightarrow	28/03/2019		0.2		0.5
	SB7-2	28/03/2019	0.2		0.5	

Ó	

	SB8-2-EP	Field ID	SA EPA- Low-level Contaminated Waste	SA EPA- Intermediate Waste	SA EPA- Waste Fill		
0000000	28/03/2019	Date	inated Waste	Ð			
	<					µg/L	Acenaphthene (filtered)
	<1					µg/L	Acenaphthylene (filtered)
	<1					µg/L	Anthracene (filtered)
	< 1					µg/L	Benz(a)anthracene (filtered)
	<1		1			µg/L	Benzo(a) pyrene (filtered)
5	<2					µg/L	Benzo(b+k)fluoranthene (filtered)
	<1					µg/L	Benzo(g,h,i)perylene (filtered)
	<1					µg/L	Chrysene (filtered)
	<1					µg/L	Dibenz(a,h)anthracene (filtered)
	<1					µg/L	Fluoranthene (filtered)
	<					µg/L	Fluorene (filtered)
	<1					µg/L	Indeno(1,2,3-c,d)pyrene (filtered)
	< 1					µg/L	Naphthalene (filtered)
	<					µg/L	Phenanthrene (filtered)
	<]					µg/L	Pyrene (filtered)
		-					

PAH

Field ID	Date															
SB8-2-EP	28/03/2019	<	<1	<1	<	<1	<2	<1	<1	<	<	<	<1	<1	<1	<
SB8-2-MEP1	28/03/2019	<	<1	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<	^	<
SB8-2-MEP2	28/03/2019	^	^1	^1	^	<_	<2	<_	^_	^	^	^	^1	^	^	^
SB8-2-MEP3	28/03/2019	<1	<	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<	^_	<
SB8-2-MEP4	28/03/2019	<1	<	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<	^_	<
SB8-2-MEP5	28/03/2019	<1	<	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<	^_	<
SB8-2-MEP6	28/03/2019	<1	<	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<	^_	<
SB8-2-MEP7	28/03/2019	<	<	<	<	^	<2	^	<	<	\leq	<	<	<	<	<
SB8-2-MEP8	28/03/2019	<1	<	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<	^_	<
SB8-2-MEP9	28/03/2019	<	<1	<1	<1	<1	<2	<1	<1	<1	<	<1	<1	<1	<1	<

ATTACHMENT 4

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 16416

Client Details	
Client	Environmental Projects
Attention	Brad Fitzgerald
Address	Level 3, 117 King William St, Adelaide, SA, 5000

Sample Details	
Your Reference	19032.01 Medindie Soil Sampling
Number of Samples	2 Water, 42 Soil
Date samples received	29/03/2019
Date completed instructions received	29/03/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	05/04/2019
Date of Issue	05/04/2019
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

VOCs in soil					
Our Reference		16416-3	16416-12	16416-16	16416-29
Your Reference	UNITS	SB1-1	SB3-1	SB4-1	SB7-1
Depth		0.0-0.1	0.1-0.2	0.3-0.35	0.0-0.1
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	03/04/2019	02/04/2019	02/04/2019	02/04/2019
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,1-dichloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5
cis-1,2-dichloroethene	mg/kg	<0.5	<0.5	<0.5	<0.5
bromochloromethane	mg/kg	<0.5	<0.5	<0.5	<0.5
chloroform	mg/kg	<0.5	<0.5	<0.5	<0.5
2,2-dichloropropane	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	mg/kg	<0.5	<0.5	<0.5	<0.5
Cyclohexane	mg/kg	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	mg/kg	<0.5	<0.5	<0.5	<0.5
trichloroethene	mg/kg	<0.5	<0.5	<0.5	<0.5
bromodichloromethane	mg/kg	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	mg/kg	<0.5	<0.5	<0.5	<0.5
cis-1,3-dichloropropene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<0.5	<0.5	<0.5	<0.5
dibromochloromethane	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	mg/kg	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,1,1,2-tetrachloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5
chlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	<0.5

VOCs in soil					
Our Reference		16416-3	16416-12	16416-16	16416-29
Your Reference	UNITS	SB1-1	SB3-1	SB4-1	SB7-1
Depth		0.0-0.1	0.1-0.2	0.3-0.35	0.0-0.1
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil
bromoform	mg/kg	<0.5	<0.5	<0.5	<0.5
m+p-xylene	mg/kg	<1	<1	<1	<1
styrene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	mg/kg	<0.5	<0.5	<0.5	<0.5
o-Xylene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2,3-trichloropropane	mg/kg	<0.5	<0.5	<0.5	<0.5
isopropylbenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
bromobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
n-propyl benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	mg/kg	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethyl benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
tert-butyl benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2,4-trimethyl benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
sec-butyl benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
4-isopropyl toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2-dichlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
n-butyl benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
hexachlorobutadiene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate Dibromofluoromethane	%	106	104	105	106
Surrogate aaa-Trifluorotoluene	%	91	92	89	92
<i>Surrogate</i> Toluene-d ₈	%	99	99	99	98
Surrogate 4-Bromofluorobenzene	%	95	94	94	94

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		16416-3	16416-8	16416-12	16416-16	16416-22
Your Reference	UNITS	SB1-1	SB2-1	SB3-1	SB4-1	SB5-3
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.3-0.35	0.2-0.3
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	03/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019
vTRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	101	101	97	100
			1	1		
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		16416-26	16416-29	16416-30	16416-34	16416-43
	UNITS	16416-26 SB6-2	16416-29 SB7-1	16416-30 SB7-2	16416-34 SB8-2	16416-43 Dup-7
Our Reference	UNITS					
Our Reference Your Reference	UNITS	SB6-2	SB7-1	SB7-2	SB8-2	
Our Reference Your Reference Depth	UNITS	SB6-2 0.15-0.25	SB7-1 0.0-0.1	SB7-2 0.15-0.25	SB8-2 0.2-0.3	Dup-7 -
Our Reference Your Reference Depth Date Sampled	UNITS	SB6-2 0.15-0.25 28/03/2019	SB7-1 0.0-0.1 28/03/2019	SB7-2 0.15-0.25 28/03/2019	SB8-2 0.2-0.3 28/03/2019	Dup-7 - 28/03/2019
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	SB6-2 0.15-0.25 28/03/2019 Soil	SB7-1 0.0-0.1 28/03/2019 Soil	SB7-2 0.15-0.25 28/03/2019 Soil	SB8-2 0.2-0.3 28/03/2019 Soil	Dup-7 - 28/03/2019 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed $vTRH C_6 - C_9$	UNITS - - mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019	Dup-7 - 28/03/2019 Soil 01/04/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed $vTRH C_6 - C_9$	- - mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed vTRH C ₆ - C ₉ vTRH C ₆ - C ₁₀	- - mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed vTRH C ₆ - C ₉ vTRH C ₆ - C ₁₀ TRH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed vTRH $C_6 - C_9$ vTRH $C_6 - C_{10}$ TRH $C_6 - C_{10}$ ERE STEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <25 <0.2	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <25 <0.2	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <25 <0.2	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed vTRH C6 - C9 vTRH C6 - C10 TRH C6 - C10 IRH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <25 <0.2 <0.2	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed vTRH C ₆ - C ₉ vTRH C ₆ - C ₁₀ TRH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed vTRH C6 - C9 vTRH C6 - C10 TRH C6 - C10 TRH C6 - C10 Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedvTRH C6 - C9vTRH C6 - C10TRH C6 - C10TRH C6 - C10EthylbenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB6-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB7-1 0.0-0.1 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	SB7-2 0.15-0.25 28/03/2019 Soil 01/04/2019 02/04/2019 <25	SB8-2 0.2-0.3 28/03/2019 Soil 01/04/2019 02/04/2019 <25	Dup-7 - 28/03/2019 Soil 01/04/2019 02/04/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

TRH Soil C10-C40 NEPM						
Our Reference		16416-3	16416-8	16416-12	16416-16	16416-22
Your Reference	UNITS	SB1-1	SB2-1	SB3-1	SB4-1	SB5-3
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.3-0.35	0.2-0.3
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	02/04/2019	02/04/2019	02/04/2019	01/04/2019	02/04/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	150	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	150	<50	<50
Surrogate o-Terphenyl	%	83	82	83	84	82
TRH Soil C10-C40 NEPM						
Our Reference		16416-26	16416-29	16416-30	16416-34	16416-43
Your Reference	UNITS	SB6-2	SB7-1	SB7-2	SB8-2	Dup-7
Depth		0.15-0.25	0.0-0.1	0.15-0.25	0.2-0.3	-
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	01/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	120	430	190	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	230	930	330	170
Total +ve TRH (C10-C36)	mg/kg	<50	350	1,400	520	170
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
		<100	270	1,100	410	210
TRH >C ₁₆ -C ₃₄	mg/kg	<100				
TRH >C ₁₆ -C ₃₄ TRH >C ₃₄ -C ₄₀	mg/kg mg/kg	<100	120	510	290	<100
				510 1,600	290 700	<100 210

TRH Soil C10-C40 NEPM		
Our Reference		16416-46
Your Reference	UNITS	SB8-2 - Triplicate
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	02/04/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	110
TRH C ₂₉ - C ₃₆	mg/kg	240
Total +ve TRH (C10-C36)	mg/kg	340
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	260
TRH >C ₃₄ -C ₄₀	mg/kg	220
Total +ve TRH (>C10-C40)	mg/kg	480
Surrogate o-Terphenyl	%	79

PAHs in Soil						
Our Reference		16416-3	16416-12	16416-22	16416-30	16416-34
Your Reference	UNITS	SB1-1	SB3-1	SB5-3	SB7-2	SB8-2
Depth		0.0-0.1	0.1-0.2	0.2-0.3	0.15-0.25	0.2-0.3
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019
Naphthalene	mg/kg	<0.1	0.1	<0.1	<0.1	<1
Acenaphthylene	mg/kg	0.1	0.6	0.3	0.6	1.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<1
Fluorene	mg/kg	<0.1	0.2	<0.1	0.2	<1
Phenanthrene	mg/kg	<0.1	2.4	0.7	3.6	5.0
Anthracene	mg/kg	<0.1	0.6	0.2	0.6	1.6
Fluoranthene	mg/kg	0.4	4.1	2.9	4.4	11
Pyrene	mg/kg	0.6	4.0	2.8	4.2	11
Benzo(a)anthracene	mg/kg	0.4	2.8	1.8	1.9	5.7
Chrysene	mg/kg	0.4	2.6	1.7	2.0	5.9
Benzo(b,j&k)fluoranthene	mg/kg	1.0	6.1	3.9	3.0	12
Benzo(a)pyrene	mg/kg	0.57	3.8	2.4	1.9	6.9
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	2.4	1.5	1	4.4
Dibenzo(a,h)anthracene	mg/kg	0.1	0.6	0.4	0.2	<1
Benzo(g,h,i)perylene	mg/kg	0.6	3.2	1.8	1.3	5.6
Total +ve PAH's	mg/kg	4.6	34	20	25	70
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.9	5.5	3.5	2.8	9.2
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.9	5.5	3.5	2.8	9.7
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	0.9	5.5	3.5	2.8	10
Surrogate p-Terphenyl-d ₁₄	%	98	92	92	90	90

PAHs in Soil		
Our Reference		16416-46
Your Reference	UNITS	SB8-2 - Triplicate
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
Naphthalene	mg/kg	<1
Acenaphthylene	mg/kg	<1
Acenaphthene	mg/kg	<1
Fluorene	mg/kg	<1
Phenanthrene	mg/kg	<1
Anthracene	mg/kg	<1
Fluoranthene	mg/kg	4.6
Pyrene	mg/kg	5.0
Benzo(a)anthracene	mg/kg	3.2
Chrysene	mg/kg	3.3
Benzo(b,j&k)fluoranthene	mg/kg	7.9
Benzo(a)pyrene	mg/kg	4.6
Indeno(1,2,3-c,d)pyrene	mg/kg	3.2
Dibenzo(a,h)anthracene	mg/kg	<1
Benzo(g,h,i)perylene	mg/kg	4.2
Total +ve PAH's	mg/kg	36
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	6.1
Benzo(a)pyrene TEQ calc (Half)	mg/kg	6.6
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	7.1
Surrogate p-Terphenyl-d ₁₄	%	88

Speciated Phenols in Soil		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
Phenol	mg/kg	<2
2-Chlorophenol	mg/kg	<2
2-Methylphenol	mg/kg	<2
3/4-Methylphenol	mg/kg	<4
2-Nitrophenol	mg/kg	<2
2,4-Dimethylphenol	mg/kg	<2
2,4-Dichlorophenol	mg/kg	<2
2,6-Dichlorophenol	mg/kg	<2
2,4,5-Trichlorophenol	mg/kg	<2
2,4,6-Trichlorophenol	mg/kg	<2
2,4-Dinitrophenol	mg/kg	<20
4-Nitrophenol	mg/kg	<40
2,3,4,6-Tetrachlorophenol	mg/kg	<2
Pentachlorophenol	mg/kg	<10
4-Chloro-3-Methylphenol	mg/kg	<20
Total +ve Cresols	mg/kg	<0.2
Total +ve Phenols	mg/kg	<0.2
Surrogate Phenol-d₀	%	100

OCP in Soil - NEPM		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
alpha-BHC	mg/kg	<1
Hexachlorobenzene	mg/kg	<1
beta-BHC	mg/kg	<1
gamma-BHC	mg/kg	<1
Heptachlor	mg/kg	<1
delta-BHC	mg/kg	<1
Aldrin	mg/kg	<1
Heptachlor Epoxide	mg/kg	<1
gamma-Chlordane	mg/kg	<1
alpha-chlordane	mg/kg	<1
Endosulfan I	mg/kg	<1
pp-DDE	mg/kg	<1
Dieldrin	mg/kg	<1
Endrin	mg/kg	<1
Endosulfan II	mg/kg	<1
pp-DDD	mg/kg	<1
Endrin Aldehyde	mg/kg	<1
pp-DDT	mg/kg	<1
Endosulfan Sulphate	mg/kg	<1
Methoxychlor	mg/kg	<1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1
Mirex	mg/kg	<5
Surrogate p-Terphenyl-d ₁₄	%	90

OP in Soil - NEPM		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
Chlorpyrifos	mg/kg	<1
Surrogate p-Terphenyl-d ₁₄	%	90

PCBs in Soil		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
Aroclor 1016	mg/kg	<1
Aroclor 1221	mg/kg	<1
Aroclor 1232	mg/kg	<1
Aroclor 1242	mg/kg	<1
Aroclor 1248	mg/kg	<1
Aroclor 1254	mg/kg	<1
Aroclor 1260	mg/kg	<1
Total +ve PCBs (1016-1260)	mg/kg	<1
Surrogate p-Terphenyl-d ₁₄	%	90

Synthetic Pyrethroids - NEPM		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
Bifenthrin	mg/kg	<5

Triazine Herbicides in Soil		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date extracted	-	01/04/2019
Date analysed	-	04/04/2019
Atrazine	mg/kg	<5

Phenoxy Acid Herbicides in Soil		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date Extracted	-	01/04/2019
Date analysed	-	03/04/2019
Clopyralid	mg/kg	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5
o-Chlorophenoxy acetic acid	mg/kg	<0.5
4-CPA	mg/kg	<0.5
Dicamba	mg/kg	<0.5
Месоргор	mg/kg	<0.5
МСРА	mg/kg	<0.5
Dichloroprop	mg/kg	<0.5
2,4-D	mg/kg	<0.5
Bromoxynil	mg/kg	<0.5
Triclopyr	mg/kg	<0.5
2,4,5-TP (Silvex)	mg/kg	<0.5
2,4,5-T	mg/kg	<0.5
МСРВ	mg/kg	<0.5
Dinoseb	mg/kg	<1
2.4-DB	mg/kg	<0.5
loxynil	mg/kg	<1
Picloram	mg/kg	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5
Acifluorfen	mg/kg	<2
2,4,6-T	mg/kg	<0.5
2,6-D	mg/kg	<0.5
Surrogate: 2,4-DCPA	%	96

NEPM screen metals in soil						
Our Reference		16416-3	16416-8	16416-12	16416-16	16416-22
Your Reference	UNITS	SB1-1	SB2-1	SB3-1	SB4-1	SB5-3
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.3-0.35	0.2-0.3
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019
Arsenic	mg/kg	18	29	8	<4	33
Cadmium	mg/kg	2	0.8	0.9	<0.4	<0.4
Chromium	mg/kg	21	14	8	12	18
Copper	mg/kg	390	130	29	10	21
Lead	mg/kg	440	230	360	8	170
Mercury	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	8	9	10	10
Zinc	mg/kg	410	190	230	8	78

NEPM screen metals in soil						
Our Reference		16416-26	16416-29	16416-30	16416-34	16416-43
Your Reference	UNITS	SB6-2	SB7-1	SB7-2	SB8-2	Dup-7
Depth		0.15-0.25	0.0-0.1	0.15-0.25	0.2-0.3	-
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019
Arsenic	mg/kg	9	45	46	17	43
Cadmium	mg/kg	<0.4	3	1	0.9	4
Chromium	mg/kg	22	24	32	13	24
Copper	mg/kg	13	220	58	67	250
Lead	mg/kg	41	480	1,000	480	540
Mercury	mg/kg	<0.1	0.3	0.1	0.4	0.4
Nickel	mg/kg	12	13	10	7	14
Zinc	mg/kg	29	470	350	390	520
Beryllium	mg/kg	[NA]	[NA]	[NA]	<1	[NA]
Boron	mg/kg	[NA]	[NA]	[NA]	10	[NA]
Cobalt	mg/kg	[NA]	[NA]	[NA]	4	[NA]
Manganese	mg/kg	[NA]	[NA]	[NA]	200	[NA]
Selenium	mg/kg	[NA]	[NA]	[NA]	<2	[NA]

NEPM screen metals in soil		
Our Reference		16416-45
Your Reference	UNITS	SB3-1 - Triplicate
Depth		0.1-0.2
Date Sampled		28/03/2019
Type of sample		Soil
Date digested	-	01/04/2019
Date analysed	-	02/04/2019
Nickel	mg/kg	6

Misc Inorg - soil NEPM		
Our Reference		16416-34
Your Reference	UNITS	SB8-2
Depth		0.2-0.3
Date Sampled		28/03/2019
Type of sample		Soil
Date prepared	-	01/04/2019
Date analysed	-	03/04/2019
Free Cyanide in soil	mg/kg	<0.5
Hexavalent Chromium, Cr6+	mg/kg	<1

Moisture						
Our Reference		16416-3	16416-8	16416-12	16416-16	16416-22
Your Reference	UNITS	SB1-1	SB2-1	SB3-1	SB4-1	SB5-3
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.3-0.35	0.2-0.3
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date analysed	-	02/04/2019	02/04/2019	02/04/2019	02/04/2019	02/04/2019
Moisture	%	4.1	7.3	8.2	17	12
Moisture						
Our Reference		16416-26	16416-29	16416-30	16416-34	16416-43
Your Reference	UNITS	SB6-2	SB7-1	SB7-2	SB8-2	Dup-7
Depth		0.15-0.25	0.0-0.1	0.15-0.25	0.2-0.3	-
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
				04/04/0040	04/04/0040	04/04/0040
Date prepared	-	01/04/2019	01/04/2019	01/04/2019	01/04/2019	01/04/2019
Date prepared Date analysed	-	01/04/2019 02/04/2019	01/04/2019 02/04/2019	01/04/2019	02/04/2019	02/04/2019

vTRH(C6-C10)/BTEXN in Water		
Our Reference		16416-1
Your Reference	UNITS	ТВ
Depth		-
Date Sampled		28/03/2019
Type of sample		Water
Date extracted	-	02/04/2019
Date analysed	-	02/04/2019
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Total +ve Xylenes	µg/L	<1
Surrogate Dibromofluoromethane	%	113
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	102

Metals in Waters - Total		
Our Reference		16416-2
Your Reference	UNITS	EB
Depth		-
Date Sampled		28/03/2019
Type of sample		Water
Date prepared	-	01/04/2019
Date analysed	-	01/04/2019
Arsenic - Total	mg/L	<0.05
Barium - Total	mg/L	<0.01
Beryllium - Total	mg/L	<0.01
Boron - Total	mg/L	<0.2
Cadmium - Total	mg/L	<0.01
Chromium - Total	mg/L	<0.01
Cobalt - Total	mg/L	<0.02
Copper - Total	mg/L	<0.01
Lead - Total	mg/L	<0.03
Manganese - Total	mg/L	<0.01
Mercury-Total	µg/L	<0.05
Nickel - Total	mg/L	<0.02
Zinc - Total	mg/L	<0.02

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Inorg-013	Cyanide - total determined colourimetrically after distillation, based on APHA latest edition, 4500-CN_C,E. Free cyanide determined colourimetrically after filtration and confirmed by diffusion. Solids are extracted in a caustic media prior to distillation and analysis.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically by discrete analyser.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
	Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Note, the Total +ve Cresols or Phenols PQL is reflective of the lowest individual PQL and is therefore" Total +ve Cresols or Phenols" is simply a sum of the positive individual Cresols or Phenols.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD or GC-MS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
ORG-031	Acid herbicides and speciated phenols in soil by DCM:Acetone extraction with derivatisation and determination by GC-MS. Haloacetic acids in waters are derivatised and analysed by GC-ECD. Acid herbicides, speciated phenols, carbamates and ureas in water by DCM extraction with derivatisation and determination by GC-MS. Analysed by MPL, NATA accrediation 2901.

QUAL	ITY CONTRO	L: VOCs	in soil			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	16416-16
Date extracted	-			01/04/2019	12	01/04/2019	01/04/2019			01/04/2019
Date analysed	-			03/04/2019	12	02/04/2019	02/04/2019			02/04/2019
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
trans-1,2-dichloroethene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
1,1-dichloroethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		89
cis-1,2-dichloroethene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
bromochloromethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
chloroform	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		92
2,2-dichloropropane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
1,2-dichloroethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		88
1,1,1-trichloroethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		92
1,1-dichloropropene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
Cyclohexane	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	12	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
1,2-dichloropropane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
trichloroethene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		95
bromodichloromethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		101
trans-1,3-dichloropropene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
cis-1,3-dichloropropene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
1,1,2-trichloroethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
dibromochloromethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		106
1,2-dibromoethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
Tetrachloroethene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		91
1,1,1,2-tetrachloroethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
chlorobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
bromoform	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
m+p-xylene	mg/kg	1	Org-014	<1	12	<1	<1	0		[NT]
styrene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]
o-Xylene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]

QUALI	TY CONTRC	L: VOCs	in soil			Dı	uplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	16416-16	
1,2,3-trichloropropane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
isopropylbenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
bromobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
n-propyl benzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
2-chlorotoluene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
4-chlorotoluene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,3,5-trimethyl benzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
tert-butyl benzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,2,4-trimethyl benzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,3-dichlorobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
sec-butyl benzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,4-dichlorobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
4-isopropyl toluene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,2-dichlorobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
n-butyl benzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,2-dibromo-3-chloropropane	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,2,4-trichlorobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
hexachlorobutadiene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
1,2,3-trichlorobenzene	mg/kg	0.5	Org-014	<0.5	12	<0.5	<0.5	0		[NT]	
Surrogate Dibromofluoromethane	%		Org-014	106	12	104	104	0		108	
Surrogate aaa-Trifluorotoluene	%		Org-014	89	12	92	91	1		89	
Surrogate Toluene-d ₈	%		Org-014	100	12	99	100	1		99	
Surrogate 4-Bromofluorobenzene	%		Org-014	94	12	94	96	2		97	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	16416-16
Date extracted	-			01/04/2019	12	01/04/2019	01/04/2019		01/04/2019	01/04/2019
Date analysed	-			02/04/2019	12	02/04/2019	02/04/2019		02/04/2019	02/04/2019
vTRH C ₆ - C ₉	mg/kg	25	Org-016	<25	12	<25	<25	0	97	96
vTRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	12	<25	<25	0	97	96
Benzene	mg/kg	0.2	Org-016	<0.2	12	<0.2	<0.2	0	95	93
Toluene	mg/kg	0.5	Org-016	<0.5	12	<0.5	<0.5	0	99	98
Ethylbenzene	mg/kg	1	Org-016	<1	12	<1	<1	0	97	95
m+p-xylene	mg/kg	2	Org-016	<2	12	<2	<2	0	97	96
o-Xylene	mg/kg	1	Org-016	<1	12	<1	<1	0	94	93
Naphthalene	mg/kg	1	Org-014	<1	12	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	99	12	101	101	0	103	98

QUALITY CON	NTROL: TRH	I Soil C10	O-C40 NEPM			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	16416-8
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	01/04/2019
Date analysed	-			01/04/2019	34	02/04/2019	02/04/2019		01/04/2019	02/04/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	34	<50	<50	0	101	96
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	34	190	<100	62	102	105
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	34	330	140	81	107	99
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	34	<50	<50	0	101	96
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	34	410	130	104	102	105
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	34	290	150	64	107	99
Surrogate o-Terphenyl	%		Org-003	86	34	82	79	4	84	80

QUAL	ITY CONTRC	L: PAHs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	
Date analysed	-			04/04/2019	34	04/04/2019	04/04/2019		04/04/2019	
Naphthalene	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	94	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	34	1.2	<1	18	94	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	98	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	34	5.0	<1	133	100	
Anthracene	mg/kg	0.1	Org-012	<0.1	34	1.6	<1	46	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	34	11	2.8	119	98	
Pyrene	mg/kg	0.1	Org-012	<0.1	34	11	3.0	114	98	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	34	5.7	2.0	96	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	34	5.9	2.0	99	102	
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-012	<0.2	34	12	5.1	81	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	34	6.9	2.9	82	98	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	34	4.4	2.1	71	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	34	5.6	2.7	70	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-012	96	34	90	90	0	96	

QUALITY CC	NTROL: Spe	ciated Ph	enols in Soil			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-		Org-012	01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	
Date analysed	-		Org-012	04/04/2019	34	04/04/2019	04/04/2019		04/04/2019	
Phenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	106	
2-Chlorophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	114	
2-Methylphenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	104	
3/4-Methylphenol	mg/kg	0.4	Org-012	<0.4	34	<4	<4	0	[NT]	
2-Nitrophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	[NT]	
2,4-Dimethylphenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	[NT]	
2,4-Dichlorophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	[NT]	
2,6-Dichlorophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	94	
2,4,5-Trichlorophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	[NT]	
2,4,6-Trichlorophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	[NT]	
2,4-Dinitrophenol	mg/kg	2	Org-012	<2	34	<20	<20	0	[NT]	
4-Nitrophenol	mg/kg	4	Org-012	<4	34	<40	<40	0	[NT]	
2,3,4,6-Tetrachlorophenol	mg/kg	0.2	Org-012	<0.2	34	<2	<2	0	[NT]	
Pentachlorophenol	mg/kg	1	Org-012	<1	34	<10	<10	0	94	
4-Chloro-3-Methylphenol	mg/kg	2	Org-012	<2	34	<20	<20	0	[NT]	
Surrogate Phenol-d ₆	%		Org-012	110	34	100	106	6	114	

QUALITY	CONTROL: C	OCP in So	oil - NEPM			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019		
Date analysed	-			04/04/2019	34	04/04/2019	04/04/2019		04/04/2019		
alpha-BHC	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	98		
Hexachlorobenzene	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
beta-BHC	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	112		
gamma-BHC	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
Heptachlor	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	122		
delta-BHC	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
Aldrin	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	100		
Heptachlor Epoxide	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	90		
gamma-Chlordane	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	102		
alpha-chlordane	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
Endosulfan I	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
pp-DDE	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	100		
Dieldrin	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	96		
Endrin	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
Endosulfan II	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
pp-DDD	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	100		
Endrin Aldehyde	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
pp-DDT	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	116		
Methoxychlor	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]		
Mirex	mg/kg	0.5	Org-012	<0.5	34	<5	<5	0	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-012	96	34	90	90	0	96		

QUALITY CONTROL: OP in Soil - NEPM					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	[NT]
Date analysed	-			04/04/2019	34	04/04/2019	04/04/2019		04/04/2019	[NT]
Chlorpyrifos	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	100	[NT]
Surrogate p-Terphenyl-d ₁₄	%		Org-012	96	34	90	90	0	96	[NT]

QUALITY CONTROL: PCBs in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	
Date analysed	-			04/04/2019	34	04/04/2019	04/04/2019		04/04/2019	
Aroclor 1016	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	85	
Aroclor 1260	mg/kg	0.1	Org-012	<0.1	34	<1	<1	0	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-012	96	34	90	90	0	96	

QUALITY CONTROL: Synthetic Pyrethroids - NEPM					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	[NT]
Date analysed	-			04/04/2019	34	04/04/2019	04/04/2019		04/04/2019	[NT]
Bifenthrin	mg/kg	0.5	Org-012	<0.5	34	<5	<5	0	100	[NT]

QUALITY CONTROL: Triazine Herbicides in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/04/2019	34	01/04/2019	01/04/2019		01/04/2019	
Date analysed	-			04/04/2019	34	04/04/2019	04/04/2019		04/04/2019	
Atrazine	mg/kg	0.5	Org-012	<0.5	34	<5	<5	0	74	[NT]

QUALITY CONTROL: Phenoxy Acid Herbicides in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Clopyralid	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0	114	
3,5-Dichlorobenzoic acid	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
o-Chlorophenoxy acetic acid	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
4-CPA	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Dicamba	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Месоргор	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
MCPA	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Dichloroprop	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
2,4-D	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0	90	
Bromoxynil	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Triclopyr	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
2,4,5-TP (Silvex)	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
2,4,5-T	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0	94	
МСРВ	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Dinoseb	mg/kg	1	ORG-031	<1	34	<1	<1	0		
2.4-DB	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
loxynil	mg/kg	1	ORG-031	<1	34	<1	<1	0		
Picloram	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
DCPA (Chlorthal) Diacid	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Acifluorfen	mg/kg	2	ORG-031	<2	34	<2	<2	0		
2,4,6-T	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
2,6-D	mg/kg	0.5	ORG-031	<0.5	34	<0.5	<0.5	0		
Surrogate: 2,4-DCPA	%		ORG-031	98	34	96	84	13	102	

QUALITY CON	TROL: NEP	M screer	n metals in soil			Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	16416-22
Date digested	-			01/04/2019	12	01/04/2019	01/04/2019		01/04/2019	01/04/2019
Date analysed	-			02/04/2019	12	02/04/2019	02/04/2019		02/04/2019	02/04/2019
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	12	8	8	0	98	114
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	12	0.9	0.7	25	100	92
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	12	8	8	0	98	104
Copper	mg/kg	1	Metals-020 ICP- AES	<1	12	29	24	19	97	115
Lead	mg/kg	1	Metals-020 ICP- AES	<1	12	360	300	18	96	102
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	12	<0.1	<0.1	0	109	113
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	12	9	15	50	96	93
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	12	230	170	30	98	118
Beryllium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	103	97
Boron	mg/kg	3	Metals-020 ICP- AES	<3	[NT]		[NT]	[NT]	103	125
Cobalt	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	98	93
Manganese	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	101	118
Selenium	mg/kg	2	Metals-020 ICP- AES	<2	[NT]		[NT]	[NT]	99	101

QUALITY CONTROL: Misc Inorg - soil NEPM					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			01/04/2019	[NT]		[NT]	[NT]	01/04/2019	
Date analysed	-			03/04/2019	[NT]		[NT]	[NT]	03/04/2019	
Free Cyanide in soil	mg/kg	0.5	Inorg-013	<0.5	[NT]		[NT]	[NT]	100	
Hexavalent Chromium, Cr6+	mg/kg	1	Inorg-024	<1	[NT]		[NT]	[NT]	106	

QUALITY CONTI	ROL: vTRH((C6-C10)/E	BTEXN in Water			Duj	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			02/04/2019	[NT]		[NT]	[NT]	02/04/2019	
Date analysed	-			02/04/2019	[NT]		[NT]	[NT]	02/04/2019	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	101	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	101	
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	99	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	108	
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	98	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	100	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	102	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	93	
Surrogate Dibromofluoromethane	%		Org-016	100	[NT]		[NT]	[NT]	99	
Surrogate toluene-d8	%		Org-016	100	[NT]		[NT]	[NT]	101	
Surrogate 4-BFB	%		Org-016	100	[NT]		[NT]	[NT]	100	

QUALITY CC	NTROL: Me	tals in W	′aters - Total			Duj	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			01/04/2019	[NT]	[NT]	[NT]	[NT]	01/04/2019	
Date analysed	-			01/04/2019	[NT]	[NT]	[NT]	[NT]	01/04/2019	
Arsenic - Total	mg/L	0.05	Metals-020 ICP- AES	<0.05	[NT]	[NT]	[NT]	[NT]	99	
Barium - Total	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	103	
Beryllium - Total	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	98	
Boron - Total	mg/L	0.2	Metals-020 ICP- AES	<0.2	[NT]	[NT]	[NT]	[NT]	107	
Cadmium - Total	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	100	
Chromium - Total	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	100	
Cobalt - Total	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]	[NT]	[NT]	[NT]	103	
Copper - Total	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	101	
Lead - Total	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	98	
Manganese - Total	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	102	
Mercury-Total	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	[NT]	[NT]	106	
Nickel - Total	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]	[NT]	[NT]	[NT]	99	
Zinc - Total	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]	[NT]	[NT]	[NT]	100	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

METALS: Laboratory %RPD acceptance criteria exceeded for laboratory sample number 16416-12 for Nickel, reanalysis indicates possible sample heterogeneity. Therefore triplicate issued as laboratory sample number 16416-45.

SVOC & TRH: Laboratory %RPD acceptance criteria exceeded for laboratory sample number 16416-34 for PAHs and TRH, reanalysis indicates possible sample heterogeneity. Therefore triplicate issued as laboratory sample number 16416-46.

PQL has been raised due to the high concentration of analytes in the sample/s, resulting in the sample/s requiring dilution.

DATA QUALITY ASSESSMENT SUMMARY

Report Details	
Envirolab Report Reference	<u>16416</u>
Client ID	Environmental Projects
Project Reference	19032.01 Medindie Soil Sampling
Date Issued	05/04/2019

QC DATA

All laboratory QC data was within the Envirolab Group's specifications except:

QC Specification I	Exceptions		
QC Type	Reference	Analysis	Comments
Precision (as %RPD)	16416-12	Nickel	50% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(a)anthracene	96% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(a)pyrene	82% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(a)pyrene TEQ calc (Half)	77% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(a)pyrene TEQ calc (PQL)	70% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(a)pyrene TEQ calc (Zero)	83% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(b,j&k)fluoranthene	81% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Benzo(g,h,i)perylene	70% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Chrysene	99% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Fluoranthene	119% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Indeno(1,2,3-c,d)pyrene	71% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Pyrene	114% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Total +ve TRH (>C10-C40)	83% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Total +ve TRH (C10-C36)	115% RPD fails internal acceptance criteria
Precision (as %RPD)	16416-34	Total +vePAH's	101% RPD fails internal acceptance criteria

QC Comments

METALS: Laboratory %RPD acceptance criteria exceeded for laboratory sample number 16416-12 for Nickel, reanalysis indicates possible sample heterogeneity. Therefore triplicate issued as laboratory sample number 16416-45.

SVOC & TRH: Laboratory %RPD acceptance criteria exceeded for laboratory sample number 16416-34 for PAHs and TRH, reanalysis indicates possible sample heterogeneity. Therefore triplicate issued as laboratory sample number 16416-46.

PQL has been raised due to the high concentration of analytes in the sample/s, resulting in the sample/s requiring dilution.

See Report 16416-[R00] for QA/QC details

HOLDING TIME COMPLIANCE EVALUATION

All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant.

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

COMPLIANCE TO QC FREQUENCY (NEPM)

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

QC Evaluation	
Duplicate(s) was performed as per NEPM frequency	\checkmark
Laboratory Control Sample(s) were analysed with the samples received	\checkmark
A Method Blank was performed with the samples received	\checkmark
Matrix spike(s) was performed as per NEPM frequency	\checkmark

Refer to Certificate of Analysis for all Quality Control data.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Projects
Attention	Brad Fitzgerald

Sample Login Details	
Your reference	19032.01 Medindie Soil Sampling
Envirolab Reference	16416
Date Sample Received	29/03/2019
Date Instructions Received	29/03/2019
Date Results Expected to be Reported	05/04/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Water, 42 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Pamela Adams	Analisa Mathrick
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Speciated Phenols in Soil	OCP in Soil - NEPM	OP in Soil - NEPM	PCBsin Soil	Synthetic Pyrethroids - NEPM	Triazine Herbicides in Soil	Phenoxy Acid Herbicidesin Soil	NEPM screen metals in soil	Free Cyanide in soil	Hexavalent Chromium, Cr6+	vTRH(C6-C10)/BTEXN in Water	Metals in Waters -Total	On Hold
ТВ															\checkmark		
EB																\checkmark	
SB1-1-0.0-0.1																	✓
SB1-2-0.1-0.2																	✓
SB1-3-0.2-0.3																	\checkmark
SB1-4-0.55-0.65																	\checkmark
SB1-5-0.9-1.0																	\checkmark
SB2-1-0.0-0.1		\checkmark	\checkmark									\checkmark					
SB2-2-0.2-0.3																	\checkmark
SB2-3-0.45-0.55																	\checkmark
SB2-4-0.9-1.0																	✓
SB3-1-0.1-0.2	✓	\checkmark	\checkmark	\checkmark								\checkmark					
SB3-2-0.2-0.3																	\checkmark
SB3-3-0.5-0.6																	\checkmark
SB3-4-0.9-1.0																	✓
SB4-1-0.3-0.35	✓	✓	✓									✓					
SB4-2-0.35-0.45																	✓
SB4-3-0.6-0.7																	✓
SB4-4-0.9-1.0																	\checkmark
SB5-1-0.0-0.1																	\checkmark
SB5-2-0.1-0.2																	✓
SB5-3-0.2-0.3	✓	✓	✓	✓								✓					
SB5-4-0.6-0.7																	\checkmark
SB5-5-0.9-1.0																	\checkmark
SB6-1 -0.0-0.																	✓
SB6-2-0.15-0.25		✓	✓									✓					
SB6-3-0.55-0.65																	✓
SB6-4-0.9-1.0																	✓
SB7-1-0.0-0.1	✓	✓	✓									✓					
SB7-2-0.15-0.25		✓	✓	✓								✓					
SB7-3-0.4-0.5																	✓
SB7-4-0.8-0.9																	✓

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Speciated Phenols in Soil	OCP in Soil - NEPM	OP in Soil - NEPM	PCBsin Soil	Synthetic Pyrethroids - NEPM	Triazine Herbicides in Soil	Phenoxy Acid Herbicidesin Soil	NEPM screen metals in soil	Free Cyanide in soil	Hexavalent Chromium, Cr6+	vTRH(C6-C10)/BTEXN in Water	Metals in Waters -Total	On Hold
SB8-1-0.0-0.1																	✓
SB8-2-0.2-0.3		✓	✓	✓	✓	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓			
SB8-3-0.3-0.4																	✓
SB8-4-0.7-0.8																	\checkmark
SB8-5-0.9-1.0																	✓
Dup-1																	\checkmark
Dup-2																	\checkmark
Dup-3																	\checkmark
Dup-4																	\checkmark
Dup-5																	\checkmark
Dup-7		\checkmark	\checkmark									\checkmark					
Dup-8																	✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

CHAIN OF CUSTODY DOCUMENTATION - Environmental Projects

	Project Title :	Medi	ndie Soil Samplin	9											ep
81	Job Number :		19032.01												
Proj	ject Manager:	E	Brad Fitzgerald												
	Phone:		0422 482 364					F	Primary	Labo	ratory:	Envir	olab		
	Email:	brad.fitzgera	ld@environmenta	lprojects.com.a	Ľ			Lal	borato	ry Quo	te Ref:				
	Results to:	Lab.Results	@environmentalg	orojects.com.au											
		brad.fitzgerald	@environmentalp	rojects.com.au				Sec	ondary	Labo	ratory:	ALS			
	Invoice to:	Lab.Results	@environmentalg	orojects.com.au				Lal	borato	ry Quo	te Ref:				
		brad.fitzgera	ld@environmenta	lprojects.com.a	Ľ										
		COC F	REFERENCE											Turna	around Required
		1903	2.01 COC-1												Standard
											L				
	SAMPLE DETAILS CHEMICAL TESTING REQUI														IRED
Contract Laboratory Sample ID	Sample ID	Sample Depth	Date Sampled	Sample Matrix	Metals (13)	ТКН (С6-С10)	TRH + BTEX + Metals (8)	TRH + BTEX + PAHs + Metals (8)	vocs	NEPM Screen					Additional Comments / Notes
1	ТВ		28/03/2019	Water		1									
2	EB		28/03/2019	Water	1										
3	SB1-1	0.0-0.1	28/03/2019	Soil				1	1						
45	SB1-2	0.1-0.2	28/03/2019	Soil											
5	SB1-3	0.2-0.3	28/03/2019	Soil	-										
6	SB1-4	0.55-0.65	28/03/2019	Soil											
7	SB1-5	0.9-1.0	28/03/2019	Soil	-					-			-	_	
8	SB2-1	0.0-0.1	28/03/2019	Soil			1			-	-		-	-	
a	SB2-2	0.2-0.3	28/03/2019	Soil	_					-	-				
10	SB2-3	0.45-0.55	28/03/2019	Soil			-		-	-	-		-		
H	SB2-4	0.9-1.0	28/03/2019	Soil			-		-	-	-		-		
12	SB3-1	0.1-0.2	28/03/2019	Soil	-		-	1	1	-	-				
13	SB3-2	0.2-0.3	28/03/2019				-			-	-		-		
10	SB3-2 SB3-3	0.2-0.3	28/03/2019	Soil			-								
15	SB3-3									-	-		-		
17	in the second	0.9-1.0	28/03/2019	Soil						-	-	-			
10	SB4-1 SB4-2	0.3-0.35	28/03/2019	Soil			1		1	-	-		-		
12	SB4-2 SB4-3	0.35-0.45	28/03/2019	Soil					-						
1009		0.6-0.7		Soil			-		-	-	-				
52	SB4-4	0.9-1.0	28/03/2019	Soil						-			_	-	
20	SB5-1	0.0-0.1	28/03/2019	Soil			-			-	-				
21	SB5-2	0.1-0.2	28/03/2019	Soil			-			-	-				
22	SB5-3	0.2-0.3	28/03/2019	Soil			-	1		-					
23	SB5-4	0.6-0.7	28/03/2019	Soil											
24	SB5-5	0.9-1.0	28/03/2019	Soil											
EP AUTHORIS	ATION		LABORATO	Received by:	1	1	2	3	3	0	<u> </u>				
Requested by: Dateitime requested:			Date	ltime received.							/	ROLF	àe		Envirolab Services 25 Research Drive
Signature:				Signature:							1	ctou.	C		lon South VIC 3136 Ph: (03) 9763 2500
													-	64	116

Date Received: 29/3/9 Time Received: 9.10 Received By: 65 Temp: Coll Ambient Cooling: Ice/Icepack Security Intact/Proken/None

Page __1__ of __3__

CHAIN OF CUSTODY DOCUMENTATION - Environmental Projects

	Project Title :	Medi	ndie Soil Samplin 19032.01	g											ep
	Job Number :														
Proj	ect Manager:		Brad Fitzgerald									-			
	Phone:		0422 482 364						Primar				virolab		
	Email:	brad.fitzgeral	d@environmenta	alprojects.com.a	u			La	borato	ry Quo	te Ref:				
	Results to:	Lab.Results	@environmental	projects.com.au											
		brad.fitzgerald	@environmental	projects.com.au				Sec	ondar	y Labo	ratory:	ALS			
	Invoice to:	Lab.Results	@environmental	projects.com.au				La	borato	ry Quo	te Ref:				
		brad.fitzgera	ld@environmenta	alprojects.com.a	u										×
		COC F	REFERENCE											Turr	naround Required
		1903	2.01 COC-1												Standard
		SAMPLE DETAILS	5							- 1	CHEMI	ICAL T	ESTIN	G REQU	JIRED
Contract aboratory Sample ID	Sample ID	Sample Depth	Date Sampled	Sample Matrix	Metals (13)	ТКН (С6-С10)	TRH + BTEX + Metals (8)	TRH + BTEX + PAHs + Metals (8)	VOCs	NEPM Screen					Additional Comments / Notes
25	SB6-1	0.0-0.1	28/03/2019	Soil											
26	SB6-2	0.15-0.25	28/03/2019	Soil			1								
27	SB6-3	0.55-0.65	28/03/2019	Soil			-							-	
28	SB6-4	0.9-1.0	28/03/2019	Soil			-		-		-	-	-	-	
	SB7-1	0.0-0.1	28/03/2019	Soil			1	-	1		-	-	+	+	
200-20000000000000000000000000000000000	SB7-2	0.15-0.25	28/03/2019	Soil	-		<u> </u>	.		-	-	-	+	+	
30	SB7-3						-	1	-	-	-	-	-	-	
SI		0.4-0.5	28/03/2019	Soil			-	-	-	-	-	-	-	-	
52	SB7-4	0.8-0.9	28/03/2019	Soil	-	-	-				-	-	-	-	
35	SB8-1	0.0-0.1	28/03/2019	Soil			-				-	-	-	-	
34	SB8-2	0.2-0.3	28/03/2019	Soil			L			1					
35	SB8-3	0.3-0.4	28/03/2019	Soil											
36	SB8-4	0.7-0.8	28/03/2019	Soil								1.1			
37	SB8-5	0.9-1.0	28/03/2019	Soil											
38	Dup-1		28/03/2019	Soil											1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 -
39	Dup-2		28/03/2019	Soil											
40	Dup-3	-	28/03/2019	Soil											-40
til	Dup-4		28/03/2019	Soil	-										
42	Dup-5		28/03/2019	Soil											
42	Dup-6		28/03/2019	Soil			1			5	SEND 1	TO ALS	FOR	TRH + E	BTEX + Metals (8) ANALYSIS
(2	Dup-7		28/03/2019	Soil			1						1	T	
(UL	Dup-8		28/03/2019	Soil						-	-	-	-	-	
44							-				-	-	+	-	
							-	-			-	-	-	-	
AUTHORISA	TION		LABORAT			-	<u> </u>				-		-	+	
AUTHORISA			LABORAT	Received by:	0	0	4	1	1	1	L	dditie		nments	
itime requested: ature:			Date	ettime received. Signature:							^	Junto			

Page __1__ of __3___

CERTIFICATE OF ANALYSIS 16416-B

Client Details	
Client	Environmental Projects
Attention	Brad Fitzgerald
Address	Level 3, 117 King William St, Adelaide, SA, 5000

Sample Details	
Your Reference	19032.01 Medindie Soil Sampling
Number of Samples	2 Water, 42 Soil
Date samples received	29/03/2019
Date completed instructions received	22/05/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	28/05/2019	
Date of Issue	27/05/2019	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Pamela Adams, Laboratory Manager, Melbourne

Authorised By

Pamela Adams, Laboratory Manager

Metals in ASLP			
Our Reference		16416-B-3	16416-B-30
Your Reference	UNITS	SB1-1	SB7-2
Depth		0.0-0.1	0.15-0.25
Date Sampled		28/03/2019	28/03/2019
Type of sample		Soil	Soil
Date extracted	-	23/05/2019	23/05/2019
Date analysed	-	24/05/2019	24/05/2019
pH of soil for ASLP	pH units	9.4	9.2
pH of soil ASLP (after HCI)	pH units	2.1	4.3
Extraction fluid used	-	1	1
pH of final Leachate	pH units	6.2	6.1
Arsenic in ASLP	mg/L	[NA]	0.2
Copper in ASLP	mg/L	0.2	[NA]
Lead in ASLP	mg/L	[NA]	0.5
Zinc in ASLP	mg/L	0.5	[NA]

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the sample mass used may be scaled down from the default based on the sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020 ASLP	Determination of various metals by ICP-MS following leaching using neutralised deionised water by AS 4439.3 - 1997.

QUALITY	CONTROL	: Metals i	Du		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/05/2019	[NT]		[NT]	[NT]	23/05/2019	
Date analysed	-			24/05/2019	[NT]		[NT]	[NT]	24/05/2019	
Arsenic in ASLP	mg/L	0.05	Metals-020 ASLP	<0.05	[NT]		[NT]	[NT]	107	
Copper in ASLP	mg/L	0.01	Metals-020 ASLP	<0.01	[NT]		[NT]	[NT]	100	
Lead in ASLP	mg/L	0.03	Metals-020 ASLP	<0.03	[NT]		[NT]	[NT]	97	
Zinc in ASLP	mg/L	0.02	Metals-020 ASLP	<0.02	[NT]		[NT]	[NT]	104	

Result Definitions	
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions		
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.	
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.	
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.	
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.	
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

DATA QUALITY ASSESSMENT SUMMARY

Report Details	
Envirolab Report Reference	<u>16416-B</u>
Client ID	Environmental Projects
Project Reference	19032.01 Medindie Soil Sampling
Date Issued	27/05/2019

QC DATA

All laboratory QC data was within the Envirolab Group's specifications.

HOLDING TIME COMPLIANCE EVALUATION

All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant.

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

COMPLIANCE TO QC FREQUENCY (NEPM)

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

QC Evaluation	
Duplicate(s) was performed as per NEPM frequency	\checkmark
Laboratory Control Sample(s) were analysed with the samples received	\checkmark
A Method Blank was performed with the samples received	\checkmark
Matrix spike(s) was performed as per NEPM frequency	\checkmark

Refer to Certificate of Analysis for all Quality Control data.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Projects
Attention	Brad Fitzgerald

Sample Login Details	
Your reference	19032.01 Medindie Soil Sampling
Envirolab Reference	16416-B
Date Sample Received	29/03/2019
Date Instructions Received	22/05/2019
Date Results Expected to be Reported	29/05/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Water, 42 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Pamela Adams	Analisa Mathrick
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

Sample ID	Metals in ASLP	On Hold
ТВ		\checkmark
EB		\checkmark
SB1-1-0.0-0.1	✓	
SB1-2-0.1-0.2		✓
SB1-3-0.2-0.3		✓
SB1-4-0.55-0.65		\checkmark
SB1-5-0.9-1.0		\checkmark
SB2-1-0.0-0.1		\checkmark
SB2-2-0.2-0.3		 <
SB2-3-0.45-0.55		✓
SB2-4-0.9-1.0		\checkmark
SB3-1-0.1-0.2		✓ ✓
SB3-2-0.2-0.3		\checkmark
SB3-3-0.5-0.6		
SB3-4-0.9-1.0		\checkmark
SB4-1-0.3-0.35		\checkmark
SB4-2-0.35-0.45		\checkmark
SB4-3-0.6-0.7		\checkmark
SB4-4-0.9-1.0		\checkmark
SB5-1-0.0-0.1		\checkmark
SB5-2-0.1-0.2		\checkmark
SB5-3-0.2-0.3		\checkmark
SB5-4-0.6-0.7		\checkmark
SB5-5-0.9-1.0		\checkmark
SB6-1 -0.0-0.1		\checkmark
SB6-2-0.15-0.25		\checkmark
SB6-3-0.55-0.65		✓ ✓ ✓ ✓
SB6-4-0.9-1.0		\checkmark
SB7-1-0.0-0.1		\checkmark
SB7-2-0.15-0.25	\checkmark	
SB7-3-0.4-0.5		\checkmark
SB7-4-0.8-0.9		\checkmark

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633

9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

Sample ID	Metals in ASLP	On Hold
SB8-1-0.0-0.1		\checkmark
SB8-2-0.2-0.3		\checkmark
SB8-3-0.3-0.4		\checkmark
SB8-4-0.7-0.8		✓
SB8-5-0.9-1.0		✓
Dup-1		✓
Dup-2		✓
Dup-3		✓
Dup-4		✓
Dup-5		✓
Dup-7		✓
Dup-8		✓
SB3-1 - Triplicate-0.1-0.2		✓
SB8-2 - Triplicate-0.2-0.3		\checkmark

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Pamela Adams

Subject:

FW: Hold times for 16416

From: Brad.Fitzgerald <<u>Brad.Fitzgerald@environmentalprojects.com.au</u>> Sent: Wednesday, 22 May 2019 4:39 PM To: Alex Stenta <<u>astenta@envirolab.com.au</u>> Subject: RE: Hold times for 16416

Dear Alex,

Hope you are well? I'm plugging along and I'm still coming to terms with the final ever episode of Game of Thrones. I found myself happy, excited, sad, confused – basically just an emotional mess.

Anyways could I please have the following testing arranged for samples on hold at your laboratory, relating to report 16416:

- Sample SB8-2 for MEP of BaP (just within the 60 days)
- Sample SB7-2 for ASLP of arsenic & lead
- Sample SB1-1 for ASLP of copper and zinc

Regards, Brad Fitzgerald 0422 482 364

This email and any attachment is confidential between Environmental Projects and the intended recipient. If you have received this email in error we ask that you do not disclose or use the information contained and that you notify us immediately by return email. Please also delete the email from your account. Thank you.

- 1 - - 1

From: Alex Stenta <<u>astenta@envirolab.com.au</u>> Sent: Friday, 3 May 2019 10:25 AM To: Brad.Fitzgerald <<u>Brad.Fitzgerald@environmentalprojects.com.au</u>> Subject: RE: Hold times for 16416

HI Brad,

You're holding times for metals are fine.

The recommended holding time for B(a)P is 14 days but as we've spoken **a**bout previously, there is evidence that heavier PAH's are stable for up to 60 days if stored cold or frozen.

Let me know if you need any more info.

CERTIFICATE OF ANALYSIS 16416-C

Client Details	
Client	Environmental Projects
Attention	Brad Fitzgerald
Address	Level 3, 117 King William St, Adelaide, SA, 5000

Sample Details	
Your Reference	19032.01 Medindie Soil Sampling
Number of Samples	10 Soil
Date samples received	29/03/2019
Date completed instructions received	22/05/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	17/06/2019		
Date of Issue	14/06/2019		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

PAHs in ASLP 4439.2 and 4439.3						
Our Reference		16416-C-1	16416-C-2	16416-C-3	16416-C-4	16416-C-5
Your Reference	UNITS	SB8-2-EP	SB8-2-MEP1	SB8-2-MEP2	SB8-2-MEP3	SB8-2-MEP4
Depth		0.2-0.3	-	-	-	-
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/05/2019	29/05/2019	29/05/2019	31/05/2019	31/05/2019
Date analysed	-	03/06/2019	03/06/2019	03/06/2019	05/06/2019	05/06/2019
pH of soil for ASLP	pH units	9.4	5.6	4.8	4.6	4.6
pH of final Leachate	pH units	5.0	6.4	6.0	6.1	6.0
Naphthalene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthylene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluorene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Phenanthrene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Anthracene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluoranthene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Pyrene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in ASLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate p-Terphenyl-d ₁₄	%	92	82	90	84	92

PAHs in ASLP 4439.2 and 4439.3						
Our Reference		16416-C-6	16416-C-7	16416-C-8	16416-C-9	16416-C-10
Your Reference	UNITS	SB8-2-MEP5	SB8-2-MEP6	SB8-2-MEP7	SB8-2-MEP8	SB8-2-MEP9
Depth		-	-	-	-	-
Date Sampled		28/03/2019	28/03/2019	28/03/2019	28/03/2019	28/03/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/06/2019	06/06/2019	12/06/2019	12/06/2019	12/06/2019
Date analysed	-	09/06/2019	09/06/2019	13/06/2019	13/06/2019	13/06/2019
pH of soil for ASLP	pH units	4.5	3.9	3.7	3.4	3.2
pH of final Leachate	pH units	5.7	5.3	4.8	4.3	4.2
Naphthalene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthylene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluorene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Phenanthrene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Anthracene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluoranthene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Pyrene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in ASLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in ASLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate p-Terphenyl-d ₁₄	%	96	92	84	86	96

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the sample mass used may be scaled down from the default based on the sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.

QUALITY CONTR	QUALITY CONTROL: PAHs in ASLP 4439.2 and 4439.3					Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			29/05/2019	[NT]		[NT]	[NT]	29/05/2019	
Date analysed	-			03/06/2019	[NT]		[NT]	[NT]	03/06/2019	
Naphthalene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	66	
Acenaphthylene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	80	
Acenaphthene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	90	
Phenanthrene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	88	
Anthracene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Pyrene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Benzo(a)anthracene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	82	
Benzo(bjk)fluoranthene in ASLP	mg/L	0.002	Org-012	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	78	
Indeno(1,2,3-c,d)pyrene - ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in ASLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-012	88	[NT]		[NT]	[NT]	90	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

DATA QUALITY ASSESSMENT SUMMARY

Report Details	
Envirolab Report Reference	<u>16416-C</u>
Client ID	Environmental Projects
Project Reference	19032.01 Medindie Soil Sampling
Date Issued	14/06/2019

QC DATA

All laboratory QC data was within the Envirolab Group's specifications.

HOLDING TIME COMPLIANCE EVALUATION

All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant except:

Holding Time Exceedances					
Analysis	Sample No	Date Sampled	Date Extracted	Date Analysed	Accepted
PAHs in ASLP 4439.2 and 4439.3					
	16416-C-1	28/03/2019	29/05/2019	03/06/2019	x
	16416-C-2	28/03/2019	29/05/2019	03/06/2019	x
	16416-C-3	28/03/2019	29/05/2019	03/06/2019	x
	16416-C-4	28/03/2019	31/05/2019	05/06/2019	×
	16416-C-5	28/03/2019	31/05/2019	05/06/2019	x
	16416-C-6	28/03/2019	06/06/2019	09/06/2019	x
	16416-C-7	28/03/2019	06/06/2019	09/06/2019	x
	16416-C-8	28/03/2019	12/06/2019	13/06/2019	x
	16416-C-9	28/03/2019	12/06/2019	13/06/2019	×
	16416-C-10	28/03/2019	12/06/2019	13/06/2019	x

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

COMPLIANCE TO QC FREQUENCY (NEPM)

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

QC Evaluation	
Duplicate(s) was performed as per NEPM frequency	\checkmark
Laboratory Control Sample(s) were analysed with the samples received	\checkmark
A Method Blank was performed with the samples received	\checkmark
Matrix spike(s) was performed as per NEPM frequency	\checkmark

Refer to Certificate of Analysis for all Quality Control data.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Projects
Attention	Brad Fitzgerald

Sample Login Details	
Your reference	19032.01 Medindie Soil Sampling
Envirolab Reference	16416-C
Date Sample Received	29/03/2019
Date Instructions Received	22/05/2019
Date Results Expected to be Reported	17/06/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	10 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Pamela Adams	Analisa Mathrick
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

Sample ID	✓ PAHs in ASLP 4439.2 and 4439.3
SB8-2-EP-0.2-0.3	\checkmark
SB8-2-EP1	\checkmark
SB8-2-EP2	\checkmark
SB8-2-EP3	\checkmark
SB8-2-EP4	\checkmark
SB8-2-EP5	\checkmark
SB8-2-EP6	✓
SB8-2-EP7	✓
SB8-2-EP8	\checkmark
SB8-2-EP9	\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

	CERTIFICAT	CERTIFICATE OF ANALYSIS		
Work Order	: EM1904596	Page	: 1 of 5	
Client	: ENVIRONMENTAL PROJECTS	Laboratory	: Environmental Division Melbourne	rne
Contact	: BRAD FITZGERALD	Contact	: Customer Services EM	
Address	: LEVEL 3 117 KING WILLIAM ST	Address	: 4 Westall Rd Springvale VIC Australia 3171	ustralia 3171
	ADELAIDE SA 5001			
Telephone	: +61 08 8410 1846	Telephone	: +61-3-8549 9600	
Project	: 19032.01	Date Samples Received	: 29-Mar-2019 13:00	antillitite.
Order number		Date Analysis Commenced	: 02-Apr-2019	C
C-O-C number		Issue Date	: 04-Apr-2019 12:41	
Sampler				HOCENER NALA
Site				
Quote number	: EN/333			Accreditation No 825
No. of samples received				Accredited for compliance with
No. of samples analysed				ISO/IEC 17025 - Testing
This report supersedes a	This report supersedes any previous report/s) with this reference. Results apply to the sample/s) as submitted. This document shall not be reproduced, except in full	s submitted This document sha	Il not he reproduced except in full	

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- **General Comments**
- **Analytical Results**
- Surrogate Control Limits

Quality Review and Sample Receipt Notification. Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with

Signatories
This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	norganic
Xing Lin	Senior Organic Chemist	Organics

Project	Client	Work Order	Page
: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 2 of 5

General Comments

developed procedures are employed in the absence of documented standards or by client request The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details

- Key : LOR = Limit of reporting CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- * = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- \sim = Indicates an estimated value.

|--|

Project	Client	Work Order	Page
: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 3 of 5

Analytical Results

Sub-Matrix: SOIL		Cio		o-dn-o	ł	1		
	Clie	nt samplin	Client sampling date / time	28-Mar-2019 00:00	-	ł	!	-
Compound CAS N	CAS Number	LOR	Unit	EM1904596-001				
				Result				
EA055: Moisture Content								
Moisture Content		1.0	%	14.4	-			
EG005(ED093)T: Total Metals by ICP-AES								
	7440-38-2	თ	mg/kg	10	1	ł	1	1
Cadmium 744	7440-43-9	<u> </u>	mg/kg	2	l	I	ł	-
	7440-47-3	N	mg/kg	26	1		-	ł
	7440-50-8	თ	mg/kg	13	1		ł	1
	7439-92-1	თ	mg/kg	30	1	I	I	1
Nickel 74	7440-02-0	N	mg/kg	14	1		ł	1
Zinc 74	7440-66-6	თ	mg/kg	30	1		-	-
EG035T: Total Recoverable Mercury by FIMS								
	7439-97-6	0.1	mg/kg	<0.1	-			
EP080/071: Total Petroleum Hydrocarbons								
C6 - C9 Fraction	!	10	mg/kg	<10	1		I	ł
C10 - C14 Fraction		50	mg/kg	<50	1		-	
C15 - C28 Fraction	1	100	mg/kg	<100	1			
C29 - C36 Fraction	I	100	mg/kg	<100	1	1	ł	1
[^] C10 - C36 Fraction (sum)	-	50	mg/kg	<50	-			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	PM 2013	Fraction	õ					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		-		
minus BTEX C6_C	0-BTEX	10	mg/kg	<10	I	I		
>C10 - C16 Fraction	1	50	mg/kg	<50	1		ł	ł
>C16 - C34 Fraction	!	100	mg/kg	<100	-			
>C34 - C40 Fraction	!	100	mg/kg	<100	1			
^ >C10 - C40 Fraction (sum)	!	50	mg/kg	<50	1			
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	-			
EP080: BTEXN								
	71-43-2	0.2	mg/kg	<0.2	1			
	108-88-3	0.5	mg/kg	<0.5	-			
Ethylbenzene 10	100-41-4	0.5	mg/kg	<0.5				
meta- & para-Xylene 108-38-3 106-42-3)6-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	-			
A Sum of DTEV		0.2	ma/ka	<0.2	-			

ALS	

Project	Client	Work Order	Page
: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 4 of 5

Analytical Results

	Client es	omnle ID	D				
			Dub-o	ł	ł	ł	Ĩ
Client sa	impling da	ate / time	28-Mar-2019 00:00	-			
ber LO		Unit	EM1904596-001				-
			Result				
		mg/kg	<0.5	-			-
0-3 1	_	mg/kg	4	-			
		%	67.8	ł			-
		%	69.5	1	H		-
0-4 0.2		%	76.4	I			1
	<i>Client se</i> 4 <i>S Number LO</i> <i>D</i> .5 91-20-3 1 91-20-3 1 2037-26-5 0.2 2037-26-5 0.2	LOF LOF 0.5 0.2 0.2	Client sampling date / time ber LOR Unit 0.5 mg/kg 1 mg/kg 0-3 1 mg/kg 6-5 0.2 % 0-4 0.2 %	pling date / time Unit mg/kg %	pling date / time 28-Mar-2019 00:00 Unit EM1904596-001 mg/kg <0.5	pling date / time 28-Mar-2019 00:00 Image: Constraint of the second of the se	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Surrogate Control Limits	Project	Client	Work Order	Page
trol Limits	: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 5 of 5

Sub-Matrix: SOIL		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124

$\boldsymbol{\wp}$
\mathbf{P}
-
\prec
\mathbf{O}
\sim
\mathbf{O}
7
~
71
U
$\mathbf{\Sigma}$

Work Order : E	: EM1904596	Page	: 1 of 5
Client : E	ENVIRONMENTAL PROJECTS	Laboratory	: Environmental Division Melbourne
Contact : B	BRAD FITZGERALD	Contact	: Customer Services EM
Address : LI	: LEVEL 3 117 KING WILLIAM ST ADELAIDE SA 5001	Address	: 4 Westall Rd Springvale VIC Australia 3171
Telephone : +	+61 08 8410 1846	Telephone	: +61-3-8549 9600
Project : 11	: 19032.01	Date Samples Received	: 29-Mar-2019
Order number :		Date Analysis Commenced	: 02-Apr-2019
C-O-C number :		Issue Date	: 04-Apr-2019
Sampler :			
Site :			
Quote number : E	: EN/333		
No. of samples received : 1			
No. of samples analysed : 1			

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- ۲ Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories
This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Xing Lin	Eric Chau	Signatories
Senior Organic Chemist	Metals Team Leader	Position
Melbourne Organics, Springvale, VIC	Melbourne Inorganics, Springvale, VIC	Accreditation Category

EG005T: Nickel
2
mg/kg
30
30
0.00

ALS

Project : 19032.01

Client

Page

Work Order

2 Of 5 EM1904596 ENVIRONMENTAL PROJECTS

General Comments

de The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client requirest.

s o	- 2
~	đ
1	
ų.	
÷	- 4
<	
	- 2
<u> </u>	- 2
=	- 4
÷.	
Χ.	
	000
~	- 2
<u> </u>	
0	- 2
≤	- 2
=	
	- 0

EM1904265-001

EM1904677-002

Anonymous Anonymous

EP080: C6 - C9 Fraction EP080: C6 - C9 Fraction

10

mg/kg mg/kg

^10 <u>^10</u>

<u>^10</u>

0.00

No Limit No Limit

EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2271911)

EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2272295)

|--|

Page Work Order

3 of 5 EM1904596

Client Project	: ENVIRONMENTAL PROJECTS : 19032.01	JECTS							ALS
Sub-Matrix: SOIL						Laboratory L	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons (Q	EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2272295) - continued							
EM1904560-010	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbons -	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 2271911)							
EM1904265-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EM1904677-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbons -	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(QC Lot: 2272295)							
EM1904560-010	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC Lot: 2271911)	Lot: 2271911)								
EM1904265-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3		mg/kg	7	4	0.00	No Limit
EM1904677-002	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	-	mg/kg	7	4	0.00	No Limit

Page: 4 of 5Work Order: EM1904596Client: ENVIRONMENTAL PROJECTSProject: 19032.01

Method Blank (MB) and Laboratory Control Spike (LCS) Report

analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS. parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC

nd CAS Number LOR Unit Init Init Unit Init Unit Init Init Unit Unit Init Unit Unit Init Init Init Unit Init Init <thinit< th=""> Init Init</thinit<>					Mathod Blank (MR)		ahoratory Control Spike (I CS)	Report							
	Sub-Matrix: SOF				Report		Spike Recovery (%)	Recovery L	imits (%)						
Sund by ICP-AES. OCC.lot: 2272052) Tridu-38 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 1 mgkg 1		CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High						
740-332 6 mg/kg <4.5 21.7 mg/kg 61.5 7.6 7440-47.3 2 mg/kg <1															
	EG005T: Arsenic	7440-38-2	თ	mg/kg	-5	21.7 mg/kg	91.9	78	107						
	EG005T: Cadmium	7440-43-9	-	mg/kg	4	4.64 mg/kg	88.5	76	108						
	EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	96.8	78	110						
	EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	95.5	78	108						
	EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	89.6	78	106						
T440-66 5 mg/kg <5 0.8 mg/kg 9.2 7.9 bite Morecury by FMS (OCLot: 2271911) T1 mg/kg <0.1	EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	97.0	80	109						
bite Mercury by FMS (CCL:dt: 2272051) 7/39.97-6 0 ng/kg 4.1 2.57 ng/kg 8.85 7.739.97-6 0 ng/kg 6.1 2.57 ng/kg 8.85 7.1 um Hydrocarbons (CCLot: 227295) 50 ng/kg 6.0 306 ng/kg 7.2 7.2 <	EG005T: Zinc	7440-66-6	ъ	mg/kg	-5	60.8 mg/kg	94.2	79	110						
T439.97-6 0.1 mg/kg <0.1 2.57 mg/kg 8.65 7.7 unh Mydrocarbons (GCLot: 2272395) 10 mg/kg <10	EG035T: Total Recoverable Mercury by FIMS (QCLot: 227205	1)													
um Hydrocarbons (OCLot: 227791) 10 mg/kg c10 36 mg/kg 77.8 61 um Hydrocarbons (OCLot: 227236) 100 mg/kg <0 300 mg/kg <0 300 mg/kg 88.4 84.4 84.4 79 um Hydrocarbons (OCLot: 227291) 100 mg/kg <0 300 mg/kg <0 300 mg/kg 84.4 79.4 75.	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	88.5	77	104						
	EP080/071: Total Petroleum Hydrocarbons (QCLot: 2271911)														
Um Hydrocarbons (QCLot: 2272295)	EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	77.8	61	127						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EP080/071: Total Petroleum Hydrocarbons (QCLot: 2272295)														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EP071: C10 - C14 Fraction		50	mg/kg	<50	806 mg/kg	77.0	72	122						
	EP071: C15 - C28 Fraction		100	mg/kg	<100	3006 mg/kg	88.4	84	123						
	EP071: C29 - C36 Fraction	1	100	mg/kg	<100	1584 mg/kg	84.6	79	119						
inder Hydrocarbons - NEPM 2013 Fractions (QCLot: 2271911) rable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2272285) v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v <th <="" colspan="6" td="" v<=""><td>EP071: C10 - C36 Fraction (sum)</td><td></td><td>50</td><td>mg/kg</td><td><50</td><td></td><td></td><td>1</td><td>1</td></th>	<td>EP071: C10 - C36 Fraction (sum)</td> <td></td> <td>50</td> <td>mg/kg</td> <td><50</td> <td></td> <td></td> <td>1</td> <td>1</td>						EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50			1	1
C6_C10 10 mg/kg <10 45 mg/kg 75.9 60 Implie Hydrocarbons - NEPM 2013 Fractions (QCLot: 2272295) 50 mg/kg <50 1160 mg/kg 80.5 77 60 50 mg/kg <100 mg/kg <100 3978 mg/kg 80.5 83.3 65 (sum) 100 mg/kg <100 mg/kg <100 3978 mg/kg 86.6 83.3 65 (sum) 71-43-2 0.2 mg/kg <0.2 mg/kg <0.2 mg/kg <0.2 2 mg/kg 69.4 65 65 100-41-4 0.5 mg/kg <0.5 mg/kg <0.5 2 mg/kg 71.0 66 67 68 66 67 68 67 68 68 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 67 6	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCLc	ot: 2271911)												
rable Hydrocarbons - NEPM 2013 Fractions (QCL-ot: 2272295) 50 mg/kg <50 1160 mg/kg 80.5 77 100 mg/kg <100 3978 mg/kg 80.5 83 83 (sum) 50 mg/kg <100 3978 mg/kg 86.6 83 83 2271911 71-43-2 0.2 mg/kg <0.2 mg/kg <0.2 2 mg/kg 60.5 2 mg/kg 63 65 100 10-2 mg/kg <0.2 mg/kg <0.2 2 mg/kg 69.4 63 65 100-41-4 0.5 mg/kg <0.5 mg/kg <0.5 2 mg/kg 71.0 68 108-88-3 0.5 mg/kg <0.5 3 mg/kg <0.5 2 mg/kg 71.0 68 63 63 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 64 <td>EP080: C6 - C10 Fraction</td> <td>C6_C10</td> <td>10</td> <td>mg/kg</td> <td><10</td> <td>45 mg/kg</td> <td>75.9</td> <td>60</td> <td>125</td>	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	75.9	60	125						
50mg/kg<501160 mg/kg80.577100mg/kg<100	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCLc	ot: 2272295)												
100mg/kg<1003978 mg/kg86.683100mg/kg<100	EP071: >C10 - C16 Fraction	-	50	mg/kg	<50	1160 mg/kg	80.5	77	121						
	EP071: >C16 - C34 Fraction	-	100	mg/kg	<100	3978 mg/kg	86.6	83	121						
(sum) 50 mg/kg <50	EP071: >C34 - C40 Fraction	-	100	mg/kg	<100	313 mg/kg	76.9	65	123						
2271911) 71.43-2 0.2 mg/kg <0.2 2 mg/kg 69.4 63 108-88-3 0.5 mg/kg <0.5	EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50			-							
71-43-2 0.2 mg/kg <0.2 2 mg/kg 69.4 63 108-88-3 0.5 mg/kg <0.5	EP080: BTEXN (QCLot: 2271911)														
108-88-3 0.5 mg/kg <0.5 2 mg/kg 74.0 67 100-41-4 0.5 mg/kg <0.5	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	69.4	63	119						
100-41-4 0.5 mg/kg <0.5 2 mg/kg 70.6 66 108-38-3 0.5 mg/kg <0.5	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	74.0	67	126						
108-38-3 0.5 mg/kg <0.5 4 mg/kg 77.0 68 106-42-3	EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	70.6	66	124						
106-42-3 0.5 mg/kg <0.5	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	77.0	68	128						
95-47-6 0.5 mg/kg <0.5 2 mg/kg 76.2 73 91-20-3 1 mg/kg <1 0.5 mg/kg 72.3 61		106-42-3													
91-20-3 1 mg/kg <1 0.5 mg/kg 72.3 61	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	76.2	73	128						
	EP080: Naphthalene	91-20-3	_	mg/kg	4	0.5 mg/kg	72.3	61	123						

Matrix Spike (MS) Report

Vork Order : 5 of 5 EM1904596	Client : ENVIRONMENTAL PROJECTS	Project : 19032.01
----------------------------------	---------------------------------	--------------------

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

analyte recoveries. Si	analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOS), Ideal recovery ranges stated may be waived in	UUS). Ideal recovery ranges stated may be walved in the event o	the event of sample matrix interference				
Sub-Matrix: SOIL				Mat	Matrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Limits (%)	nits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	NS	Low	High
EG005(ED093)T: 1	EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2272052)						
EM1904517-022	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	94.1	78	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	89.7	84	116
		EG005T: Chromium	7440-47-3	50 mg/kg	99.6	79	121
		EG005T: Copper	7440-50-8	50 mg/kg	99.8	82	124
		EG005T: Lead	7439-92-1	50 mg/kg	91.4	76	124
		EG005T: Nickel	7440-02-0	50 mg/kg	95.5	78	120
		EG005T: Zinc	7440-66-6	50 mg/kg	95.6	74	128
EG035T: Total Re	EG035T: Total Recoverable Mercury by FIMS (QCLot: 2272051)						
EM1904517-009	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	95.5	76	116
EP080/071: Total I	EP080/071: Total Petroleum Hydrocarbons (QCLot: 2271911)						
EM1904265-005	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	82.1	42	131
EP080/071: Total I	EP080/071: Total Petroleum Hydrocarbons (QCLot: 2272295)						
EM1904560-024	Anonymous	EP071: C10 - C14 Fraction		806 mg/kg	77.0	53	123
		EP071: C15 - C28 Fraction	1	3006 mg/kg	88.0	70	124
		EP071: C29 - C36 Fraction		1584 mg/kg	83.1	64	118
EP080/071: Total I	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(QCLot: 2271911)	.ot: 2271911)					
EM1904265-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	79.6	39	129
EP080/071: Total I	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2272295)	.ot: 2272295)					
EM1904560-024	Anonymous	EP071: >C10 - C16 Fraction	-	1160 mg/kg	80.3	65	123
		EP071: >C16 - C34 Fraction	ļ	3978 mg/kg	85.9	67	121
		EP071: >C34 - C40 Fraction	-	313 mg/kg	71.6	44	126
EP080: BTEXN (QCLot: 2271911)	2CLot: 2271911)						
EM1904265-005	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	94.6	50	136
		EP080: Toluene	108-88-3	2 mg/kg	94.3	56	139

	WA/WC Compliance Assessment to assist with Quality Review	t to assist with	Quality Review
Work Order	: EM1904596	Page	: 1 of 4
Client	ENVIRONMENTAL PROJECTS	Laboratory	: Environmental Division Melbourne
Contact	: BRAD FITZGERALD	Telephone	: +61-3-8549 9600
Project	: 19032.01	Date Samples Received	: 29-Mar-2019
Site		Issue Date	: 04-Apr-2019
Sampler		No. of samples received	
Order number		No. of samples analysed	

report contribute to the overall DQO assessment and reporting for guideline compliance. reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outling occur
- <u>NO</u> Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

- <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

<u>NO</u> Quality Control Sample Frequency Outliers exist.

Project	Client	Work Order	Page
: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 2 of 4

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein. This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container

14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters. Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics

should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern. Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and

Matrix: SOIL				Evaluation:	× = Holding time I	Evaluation: \star = Holding time breach ; \checkmark = Within holding time.	holding time.
Method	Sample Date	Ext	Extraction / Preparation		¢	Analysis	0
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055) Dup-6	28-Mar-2019	ł		-	02-Apr-2019	11-Apr-2019	<
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) Dup-6	28-Mar-2019	03-Apr-2019	24-Sep-2019	٢	03-Apr-2019	24-Sep-2019	<
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) Dup-6	28-Mar-2019	03-Apr-2019	25-Apr-2019	٢	03-Apr-2019	25-Apr-2019	<
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) Dup-6	28-Mar-2019	02-Apr-2019	11-Apr-2019	٢	02-Apr-2019	11-Apr-2019	<
Soil Glass Jar - Unpreserved (EP071) Dup-6	28-Mar-2019	03-Apr-2019	11-Apr-2019	٩	03-Apr-2019	13-May-2019	<
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) Dup-6	28-Mar-2019	02-Apr-2019	11-Apr-2019	٢	02-Apr-2019	11-Apr-2019	<
Soil Glass Jar - Unpreserved (EP071) Dup-6	28-Mar-2019	03-Apr-2019	11-Apr-2019	٢	03-Apr-2019	13-May-2019	<
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) Dup-6	28-Mar-2019	02-Apr-2019	11-Apr-2019	٢	02-Apr-2019	11-Apr-2019	<

Project	Client	Work Order	Page
: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 3 of 4

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix SOI

Evaluatio = Ouality Control fre not within prification · ✓ = Ouality Control fr within orificatio

	00	unt		Rate (%)		Quality Control Specification
Method	ас	Reaular	Actual	Expected	Evaluation	
EA055	2	20	10.00	10.00	<	NEPM 2013 B3 & ALS QC Standard
EG035T	2	14	14.29	10.00	<	NEPM 2013 B3 & ALS QC Standard
EG005T	2	20	10.00	10.00	۲	NEPM 2013 B3 & ALS QC Standard
EP071		9	11.11	10.00	<	NEPM 2013 B3 & ALS QC Standard
EP080	2	13	15.38	10.00	<	NEPM 2013 B3 & ALS QC Standard
EG035T	-	14	7.14	5.00	<	NEPM 2013 B3 & ALS QC Standard
EG005T		20	5.00	5.00	<	NEPM 2013 B3 & ALS QC Standard
EP071		9	11.11	5.00	<	NEPM 2013 B3 & ALS QC Standard
EP080	_	13	7.69	5.00	<	NEPM 2013 B3 & ALS QC Standard
EG035T	_	14	7.14	5.00	<	NEPM 2013 B3 & ALS QC Standard
EG005T	_	20	5.00	5.00	۲	NEPM 2013 B3 & ALS QC Standard
EP071	-	9	11.11	5.00	۲	NEPM 2013 B3 & ALS QC Standard
EP080		13	7.69	5.00	<	NEPM 2013 B3 & ALS QC Standard
EG035T	_	14	7.14	5.00	۲	NEPM 2013 B3 & ALS QC Standard
EG005T		20	5.00	5.00	۲	NEPM 2013 B3 & ALS QC Standard
EP071	-	9	11.11	5.00	<	NEPM 2013 B3 & ALS QC Standard
EP080		13	7.69	5.00	<	NEPM 2013 B3 & ALS QC Standard
		EA055 2 EG035T 2 EG005T 2 EP080 2 EP080 2 EB005T 1 EB005T 1	Count Count EA055 2 EG0351 2 EB0051 2 EB0051 2 EB0051 1 EB0051 1 </td <td>Count Reaular Reaular EA055 2 20 EG03517 2 14 EG00517 2 14 EG00517 2 14 EG00517 1 9 EP070 1 9 EP080 2 13 EG03517 1 14 EG03517 1 14 EG03517 1 13 EP080 1 13 EG03517 1 14 EG03517 1 14 EG03517 1 14 EG03517 1 14 EG03517 1 13 EP0600 1 13 EP06051 1 20 EP06051 1 14 EQ03517 1 14 EP06051 1 13 EP06051 1 14 EP06051 1 20 EP06051 1</td> <td>Count Reaular Actual E EA055 2 20 10.00 E EG0351 2 14 14.29 E EG0351 2 14 14.29 E EG0351 2 14 14.29 E EG0351 1 9 11.11 E EG0351 1 14 7.14 E EG0351 1 13 7.69 E EP0671 1 9 11.11 E EP0680 1 14 5.</td> <td>$\begin{tabular}{ c c c } \hline Count & Rate (%) \\ \hline OC & Recular & Actual & Expected \\ \hline Recular & Actual & Expected \\ \hline \expected & Actual & Expected \\ \hline \expected & Actual & Expected \\ \hline \expected & 2 & 20 & 10.00 & 10.00 \\ \hline \expected & 2 & 14 & 14.29 & 10.00 & 10.00 \\ \hline \expected & 2 & 14 & 14.29 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00$</td>	Count Reaular Reaular EA055 2 20 EG03517 2 14 EG00517 2 14 EG00517 2 14 EG00517 1 9 EP070 1 9 EP080 2 13 EG03517 1 14 EG03517 1 14 EG03517 1 13 EP080 1 13 EG03517 1 14 EG03517 1 14 EG03517 1 14 EG03517 1 14 EG03517 1 13 EP0600 1 13 EP06051 1 20 EP06051 1 14 EQ03517 1 14 EP06051 1 13 EP06051 1 14 EP06051 1 20 EP06051 1	Count Reaular Actual E EA055 2 20 10.00 E EG0351 2 14 14.29 E EG0351 2 14 14.29 E EG0351 2 14 14.29 E EG0351 1 9 11.11 E EG0351 1 14 7.14 E EG0351 1 13 7.69 E EP0671 1 9 11.11 E EP0680 1 14 5.	$\begin{tabular}{ c c c } \hline Count & Rate (%) \\ \hline OC & Recular & Actual & Expected \\ \hline Recular & Actual & Expected \\ \hline \expected & Actual & Expected \\ \hline \expected & Actual & Expected \\ \hline \expected & 2 & 20 & 10.00 & 10.00 \\ \hline \expected & 2 & 14 & 14.29 & 10.00 & 10.00 \\ \hline \expected & 2 & 14 & 14.29 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 & 10.00 & 10.00 \\ \hline \expected & 2 & 13 & 15.38 & 10.00 $

Project	Client	Work Order	Page
: 19032.01	: ENVIRONMENTAL PROJECTS	: EM1904596	: 4 of 4

Brief Method Summaries

developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house

Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions	s have been developed a	are provided withi	the Method Descriptions.
Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EM1904596			
Client Contact Address	ENVIRONMENTAL PROJECTS BRAD FITZGERALD LEVEL 3 117 KING WILLIAM ST ADELAIDE SA 5001	Laboratory Contact Address	: Customer Se	tal Division Melbourne ervices EM d Springvale VIC Australia
E-mail Telephone Facsimile	 brad.fitzgerald@environmentalprojec ts.com.au +61 08 8410 1846 +61 08 8410 1846 	E-mail Telephone Facsimile	: ALSEnviro.N : +61-3-8549 : +61-3-8549	
Project Order number C-O-C number Site Sampler	: 19032.01 : : :	Page Quote number QC Level		/IPR0001 (EN/333) B3 & ALS QC Standard
Dates Date Samples Rece Client Requested Du Date	20 1101 2010 10100	Issue Date Scheduled Reporting [29-Mar-2019 05-Apr-2019
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Undefined	Security Seal Temperature No. of samples receive		 Not Available 10.6°C - Ice Bricks present 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

SOIL - S-05 FRH/BTEXN/8 Metals

√

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will

default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL Client sampling Client sample ID Interview Laboratory sample Client sampling Client sample ID Interview ID date / time Interview Interview EM1904596-001 28-Mar-2019 00:00 Dup-6 ✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	accounts@environmentalprojects.co m.au
BRAD FITZGERALD		
- *AU Certificate of Analysis - NATA (COA)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- A4 - AU Tax Invoice (INV)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- Chain of Custody (CoC) (COC)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- EDI Format - ENMRG (ENMRG)	Email	brad.fitzgerald@environmentalprojec ts.com.au
- EDI Format - ESDAT (ESDAT)	Email	brad.fitzgerald@environmentalprojec ts.com.au
Lab Results		
- *AU Certificate of Analysis - NATA (COA)	Email	Lab.Results@environmentalprojects .com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Lab.Results@environmentalprojects .com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Lab.Results@environmentalprojects .com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lab.Results@environmentalprojects .com.au
- A4 - AU Tax Invoice (INV)	Email	Lab.Results@environmentalprojects .com.au
- Chain of Custody (CoC) (COC)	Email	Lab.Results@environmentalprojects .com.au
- EDI Format - ENMRG (ENMRG)	Email	Lab.Results@environmentalprojects .com.au
- EDI Format - ESDAT (ESDAT)	Email	Lab.Results@environmentalprojects .com.au

CHAIN O	F CUSTODY	Y DOCUN	IENTATIO	N - Envit	onm	ienta	l Pro	jects	3						
	Project Title :	Med	ndie Soil Samplin	19											
	Job Number :		19032.01												
Pro	ject Manager:	1	Brad Fitzgerald												
	Phone:		0422 482 364						Primar	y Labo	ratory	Env	tolab		
	Email:	brad.fitzgera	id@environmesta	alprojects.com.s	u.			La	borato	ry Quo	te Ref;	;			
	Results to:		(Renvironmental												
			@environmental)					Se	tsbnos	y Labo	natory:	ALS			
	Invoice to:		convironmental					La	borato	ry Quo	te Rei:				
		brad.fitzgen	ld@environmenta	abroiects.com.e	Ш										
		COCI	REFERENCE	•		1								Term	around Required
		1913	2.01 000-1			Í									Standard
]									• ••.
	SAI	NPLE DETAIL	3				T				CKEM	CAL TE	STING	REQL	JIRED -
											[
												4			i i
									ŀ						
Contract		Sample		Sample				ŝ							
Laboratory Sampie ID	Sample ID	Depth	Date Sampled	Matrix			-	Į.				1			Additional Commonts / Notes
·							19 8 8 8	1				·			
							BTEX + Metals (8)	RH + BTEX + PAHs + Metals (9)							
			ļ		5	RH (C6-C10)	Ě	ž		IEPM Screen					
					lotals (13)	<u>ڳ</u>	RH + B	1	50	₩.					
	SB6-1		28/03/2019		÷.	Ĕ	Ĕ	Ĕ	Ŝ	ÿ				<u> </u>	
	586-2	0.0-0.1		Sol				<u> </u>						<u> </u>	
	385-2 S85-3		28/03/2019	Sol			1	 							
	585-5 585-4	0.55-0.65	28/03/2019	801				<u> </u>	-	<u> </u>		<u> </u>		<u> </u>	
	SB7-1	0.9-1.0	28/03/2019	Sol Sol			<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	
	S87-2	0.15-0.25	28/03/2019	Soil			1	1	1	<u> </u>					
	\$87.3	0.4-0.5	28/03/2015	Sol					-						
	SB7-4	0.8-0,9	28/03/2019	Sol							<u> </u>				
	SB8-1	0.0-0.1	28/03/2019	Soil	-					-					
	SB8-2	0.2-0.3	28/03/2019	Soð	-					1					
	\$88-3	0.3-0.4	28/03/2019	Sol						ŀ					· · · · · · · · · · · · · · · · · · ·
	888-4	0.7-0.8	28/03/2019	508					-			\vdash		<u> </u>	
	S88-5	0.9-1.0	28/03/2019	Soit	\vdash		\vdash	<u> </u>							
	Dup-1	•	28/03/2019	Soit	<u> </u>		1	t	<u> </u>	<u> </u>			<u> </u>		<u> </u>
	Dup-2	-	28/03/2019	Sol					<u> </u>			\square			<u> </u>
	Dup-3		28/03/2019	Soil	 		1			· · ·		1	1	1	<u> </u>
i	Dup-4		28/03/2019	Sol	1		T						<u> </u>		
	Dup-5	•	28/03/2019	Soil	1		1	<u> </u>	<u> </u>		·····	1	<u> </u>		
	Dup-6	•	28/03/2019	Sol			1		·		END	TO ALS	FOR	RH + 1	BTEX + Metals (8) ANALYSIS
•	Dup-7	•	28/03/2019	Sol			1								
	Dup-8	-	28/03/2019	Soil											
	Picki I		L											ļ	•
EP AUTHORIS	ATION		LABORAT	ORY RECEIPT Received by:	0	0	4	1	1	1	L,	ddition	*1 C+-		· · ·
			Viner		-	、					A	សាលេខព	60 7	une ras	
Califizzie requested:		/	Date	stime received:	Ĩ	1					En	viro	onm	ent	tal Division
		ر آ	73	L 2	5-0	10						əlbo			
Ngrature;			1	Signatura;	1							Wor	k Oi	der	Reference
			×.	-								F	M	10	04596
					L				_						

Page ______ of _____

Telephone : + 61-3-8549 9600